scholarly journals RNA-seq analysis of circRNA profiles in the lens of Crybb2 knockout mice

Author(s):  
Qian Gao ◽  
Hao Xu ◽  
Yuping Duan ◽  
Leiming Cai ◽  
Zhiwen Nie ◽  
...  

Abstract Background: Currently, there is little information on the expression profiles of circRNAs in the lens. βB2-crystallin (CRYBB2) is an abundant protein in the mammalian lens, and its abnormal expression contributes to the development of cataract. This study aimed at exploring how Crybb2 knockout could modulate the expression profiles of circRNAs in mouse lens. Methods and Results: We extracted total RNAs from the lens of wide-type (WT) and Crybb2 -/- mice and after depleted their rRNAs and broken the remaining RNAs, we reversely transcribed the RNAs into cDNAand sequenced them. Furthermore, we performed bioinformatics to identify and analyze the differentially expressed circRNAs and predicted their potential functions. We validated some differentially expressed circRNAs by quantitative RT-PCR. We employed RNA-seq to identify 49,494 circRNAs and compared to the WT lens, 149 circRNAs were upregulated and 172 downregulated in Crybb2 -/- mouse lens. With the top 300 miRNA-circRNA interaction pairs, we constructed a network of circRNA-miRNA interactions. Moreover, those differentially expressed circRNAs participated in various biological processes, such as lens fiber cell development, calcium channel complex, structural constituent of the lens. They were involved in several important pathways, such as the canonical Wnt signaling pathway. Quantitative RT-PCR validated some differently expressed circRNAs in the lens of Crybb2 -/- mice. Conclusions: Crybb2 knockout significantly modulated circRNA expression profiles in the lens of mice, which may help clarify the roles of circRNAs in age-related cataracts.

Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1565
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jiang Hu ◽  
Xiu Liu ◽  
...  

Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA with >200 nucleotides in length. Some lncRNAs have been proven to have clear regulatory functions in many biological processes of mammals. However, there have been no reports on the roles of lncRNAs in ovine mammary gland tissues. In the study, the expression profiles of lncRNAs were studied using RNA-Seq in mammary gland tissues from lactating Small-Tailed Han (STH) ewes and Gansu Alpine Merino (GAM) ewes with different milk yield and ingredients. A total of 1894 lncRNAs were found to be expressed. Compared with the GAM ewes, the expression levels of 31 lncRNAs were significantly up-regulated in the mammary gland tissues of STH ewes, while 37 lncRNAs were remarkably down-regulated. Gene Ontogeny (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the target genes of differentially expressed lncRNAs were enriched in the development and proliferation of mammary epithelial cells, morphogenesis of mammary gland, ErbB signaling pathway, and Wnt signaling pathway. Some miRNA sponges of differentially expressed lncRNAs, reported to be associated with lactation and mammary gland morphogenesis, were found in a lncRNA-miRNA network. This study reveals comprehensive lncRNAs expression profiles in ovine mammary gland tissues, thereby providing a further understanding of the functions of lncRNAs in the lactation and mammary gland development of sheep.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Rossella Gratton ◽  
João Paulo Britto de Melo ◽  
José Leandro Andrade-Santos ◽  
Rafael Lima Guimarães ◽  
...  

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.


2020 ◽  
Author(s):  
Yichuan Liu ◽  
Hui-Qi Qu ◽  
Xiao Chang ◽  
Lifeng Tian ◽  
Joseph Glessner ◽  
...  

AbstractSchizophrenia (SCZ) is a chronic and severely disabling neurodevelopmental disorder that affects people worldwide. RNA-seq has been a powerful method to detect the differentially expressed genes/non-coding RNAs in patients; however, due to overfitting problems differentially expressed targets (DETs) cannot be used properly as biomarkers. In this study, dorsolateral prefrontal cortex (dlpfc) RNA-seq data from 254 individuals’ was obtained from the CommonMind consortium and analyzed with machine learning methods, including random forest, forward feature selection (ffs), and factor analysis, to reduce the numbers of gene/non-coding RNA feature vectors to overcome overfitting problem and explore involved functional clusters. In 2-fold shuffle testing, the average predictive accuracy for SCZ patients was 67% based on coding genes, and the 96% based on long non-coding RNAs (lncRNAs). Coding genes were further clustered into 14 factors and lncRNAs were clustered into 45 factors to represent the underlying features. The largest contribution factor for coding genes contains number of genes critical in neurodevelopment and previously reported in relation with various brain disorders. Genomic loci of lncRNAs were more insightful, enriched for genes critical in synapse function (p=7.3E-3), cell junction (p=0.017), neuron differentiation (p=8.3E-3), phosphorylation (8.2E-4), and involving the Wnt signaling pathway (p=0.029). Taken together, machine learning is a powerful algorithm to reduce functional biomarkers in SCZ patients. The lncRNAs capture the characteristics of SCZ tissue more accurately than mRNA as the formers regulate every level of gene expression, not limited to mRNA levels.


2020 ◽  
Author(s):  
Jianjun Li ◽  
Chenglin Ye ◽  
Cuifang Chang

Abstract Background: Trichomes comprise specialized multicellular structures that have the capacity to synthesize and secrete secondary metabolites and protect plants from biotic and abiotic stresses. However, little is known about the trichome formation mechanism during flower development in Lonicera Japonica Thunb.Results: Here, we present a genome-wide comparative transcriptome analysis between two L. japonica cultivars, toward the identification of biological processes and functional gene activities that occur during flowering stage trichome development. In this study, the density and average lengths of flower trichomes were at their highest during three green periods. Using the Illumina RNA-Seq method, we obtained 134,304 unigenes, 33,733 of which were differentially expressed. In an analysis of 40 differentially expressed unigenes (DEGs) involved in trichome development, 29 of these were transcription factors. The DEGs analysis of plant hormone signal transduction indicated that plant growth and development may be independent of GA and CTK signaling pathways, and plant stress may be independent of JA and ET signaling pathways. We successfully isolated key genes involved in the floral biosynthesis of odors, tastes, colors, and plant hormones, and proposed biosynthetic pathways for sesquiterpenoid, triterpenoid, monoterpenoid, flavonoid, and plant hormones. Furthermore, 82 DEGs were assigned to cell cycles and 2,616 were predicted as plant resistance genes (PRGs).Conclusions: This study provides a comprehensive characterization of the expression profiles of flower development during the seven developmental stages of L. japonica, thereby offering valuable insights into the molecular networks that underly flower development in L. japonica.


2020 ◽  
Author(s):  
Dawei Zhang ◽  
Wenjing Wu ◽  
Xin Huang ◽  
Ke Xu ◽  
Cheng Zheng ◽  
...  

Abstract Background: Chinese domestic pig breeds are reputed for pork quality, but their low ratio of lean-to-fat carcass weight decreases production efficiency. A better understanding of the genetic regulation network of SC fat tissue is necessary for the rational selection of Chinese domestic pig breeds. In the present study, SC adipocytes were isolated from Jiaxing Black pigs (a Chinese indigenous pig breed with redundant SC fat deposition) and Large White pigs (a lean-type pig breed with relatively low SC fat deposition) and the expression profiles of mRNAs and lncRNAs were compared by RNA-seq analysis to identify biomarkers correlated with the differences of SC fat deposition between the two breeds.Results: A total of 3,371 differentially expressed genes (DEGs) and 1,182 differentially expressed lncRNAs (DELs) were identified in SC adipocytes between Jiaxing Black (JX) and Large White (LW) pigs, which included 797 upregulated mRNAs, 2,574 downregulated mRNAs, 461 upregulated lncRNAs and 721 downregulated lncRNAs. Gene Ontology and KEGG pathway analyses revealed that the DEGs and DELs were mainly involved in the immune response, cell fate determination, PI3K-Akt signaling pathway and MAPK signaling pathway, which are known to be related to adipogenesis and lipid metabolism. The expression levels of DEGs and DELs according to the RNA-seq data were verified by quantitative PCR, which showed 81.8% consistency. The differences in MAPK pathway activity between JX and LW pigs was confirmed by western blot analysis, with <100-fold elevated p38 phosphorylation in JX pigs.Conclusions: This study offers a detailed characterization of mRNAs and lncRNAs in fat- and lean-type pig breeds. The activity of the MAPK signaling pathway was found to be associated with subcutaneous adipogenesis. These results greatly enhance our understanding of the molecular mechanisms regulating SC fat deposition in pigs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2367-2367
Author(s):  
Mira Jeong ◽  
Deqiang Sun ◽  
Min Luo ◽  
Aysegul Ergen ◽  
Hongcang Gu ◽  
...  

Abstract Abstract 2367 Hematopoietic stem cell (HSC) Aging is a complex process linked to number of changes in gene expression and functional decline of self-renewal and differentiation potential. While epigenetic changes have been implicated in HSC aging, little direct evidence has been generated. DNA methylation is one of the major underlying mechanisms associated with the regulation of gene expression, but changes in DNA methylation patterns with HSC aging have not been characterized. We hypothesize that revealing the genome-wide DNA methylation and transcriptome signatures will lead to a greater understanding of HSC aging. Here, we report the first genome-scale study of epigenomic dynamics during normal mouse HSC aging. We isolated SP-KSL-CD150+ HSC populations from 4, 12, 24 month-old mouse bone marrow and carried out genome-wide reduced representative bisulfite sequencing (RRBS) and identified aging-associated differentially methylated CpGs. Three biological samples were sequenced from each aging group and we obtained 30–40 million high-quality reads with over 30X total coverage on ∼1.1M CpG sites which gives us adequate statistical power to infer methylation ratios. Bisulfite conversion rate of non-CpG cytosines was >99%. We analyzed a variety of genomic features to find that CpG island promoters, gene bodies, 5'UTRs, and 3'UTRs generally were associated with hypermethylation in aging HSCs. Overall, out of 1,777 differentially methylated CpGs, 92.8% showed age-related hypermethylation and 7.2% showed age-related hypomethylation. Gene ontology analyses have revealed that differentially methylated CpGs were significantly enriched near genes associated with alternative splicing, DNA binding, RNA-binding, transcription regulation, Wnt signaling and pathways in cancer. Most interestingly, over 579 splice variants were detected as candidates for age-related hypermethylation (86%) and hypomethylation (14%) including Dnmt3a, Runx1, Pbx1 and Cdkn2a. To quantify differentially expressed RNA-transcripts across the entire transcriptome, we performed RNA-seq and analyzed exon arrays. The Spearman's correlation between two different methods was good (r=0.80). From exon arrays, we identified 586 genes that were down regulated and 363 gene were up regulated with aging (p<0.001). Most interestingly, overall expression of DNA methyl transferases Dnmt1, Dnmt3a, Dnmt3b were down regulated with aging. We also found that Dnmt3a2, the short isoform of Dnmt3a, which lacks the N-terminal region of Dnmt3a and represents the major isoform in ES cells, is more expressed in young HSC. For the RNA-seq analysis, we focused first on annotated transcripts derived from cloned mRNAs and we found 307 genes were down regulated and 1015 gene were up regulated with aging (p<0.05). Secondly, we sought to identify differentially expressed isoforms and also novel transcribed regions (antisense and novel genes). To characterize the genes showing differential regulation, we analyzed their functional associations and observed that the highest scoring annotation cluster was enriched in genes associated with translation, the immune network and hematopoietic cell lineage. We expect that the results of these experiments will reveal the global effect of DNA methylation on transcript stability and the translational state of target genes. Our findings will lend insight into the molecular mechanisms responsible for the pathologic changes associated with aging in HSCs. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 15 (3) ◽  
pp. 258-262 ◽  
Author(s):  
Hisashi Ida ◽  
Sharon A. Boylan ◽  
Andrea L. Weigel ◽  
Leonard M. Hjelmeland

To evaluate the age-related changes in gene expression occurring in the complex of retinal pigmented epithelium, Bruch’s membrane, and choroid (RPE/choroid), we examined the gene expression profiles of young adult (2 mo) and old (24 mo) male C57BL/6 mice. cDNA probe sets from individual animals were synthesized using total RNA isolated from the RPE/choroid of each animal. Probes were amplified using the Clontech SMART system, radioactively labeled, and hybridized to two different Clontech Atlas mouse cDNA arrays. From each age group, three independent triplicates were hybridized to the arrays. Statistical analyses were performed using the Significance Analysis of Microarrays program (SAM version 1.13; Stanford University). Selected array results were confirmed by semi-quantitative RT-PCR analysis. Of 2,340 genes represented on the arrays, ∼60% were expressed in young and/or old mouse RPE/choroid. A moderate fraction (12%) of all expressed genes exhibited a statistically significant change in expression with age. Of these 150 genes, all but two, HMG14 and carboxypeptidase E, were upregulated with age. Many of these upregulated genes can be grouped into several broad functional categories: immune response, proteases and protease inhibitors, stress response, and neovascularization. RT-PCR results from six of six genes examined confirmed the differential change in expression with age of these genes. Our study provides likely candidate genes to further study their role in the development of age-related macular degeneration and other aging diseases affecting the RPE/choroid.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11215
Author(s):  
Claudia-Anahí Pérez-Torres ◽  
Enrique Ibarra-Laclette ◽  
Eric-Edmundo Hernández-Domínguez ◽  
Benjamín Rodríguez-Haas ◽  
Alan-Josué Pérez-Lira ◽  
...  

Fusarium kuroshium is a novel member of the Ambrosia Fusarium Clade (AFC) that has been recognized as one of the symbionts of the invasive Kuroshio shot hole borer, an Asian ambrosia beetle. This complex is considered the causal agent of Fusarium dieback, a disease that has severely threatened natural forests, landscape trees, and avocado orchards in the last 8 years. Despite the interest in this species, the molecular responses of both the host and F. kuroshium during the infection process and disease establishment remain unknown. In this work, we established an in vitro pathosystem using Hass avocado stems inoculated with F. kuroshium to investigate differential gene expression at 1, 4, 7 and 14 days post-inoculation. RNA-seq technology allowed us to obtain data from both the plant and the fungus, and the sequences obtained from both organisms were analyzed independently. The pathosystem established was able to mimic Fusarium dieback symptoms, such as carbohydrate exudation, necrosis, and vascular tissue discoloration. The results provide interesting evidence regarding the genes that may play roles in the avocado defense response to Fusarium dieback disease. The avocado data set comprised a coding sequence collection of 51,379 UniGenes, from which 2,403 (4.67%) were identified as differentially expressed. The global expression analysis showed that F. kuroshium responsive UniGenes can be clustered into six groups according to their expression profiles. The biologically relevant functional categories that were identified included photosynthesis as well as responses to stress, hormones, abscisic acid, and water deprivation. Additionally, processes such as oxidation-reduction, organization and biogenesis of the cell wall and polysaccharide metabolism were detected. Moreover, we identified orthologues of nucleotide-binding leucine-rich receptors, and their possible action mode was analyzed. In F. kuroshium, we identified 57 differentially expressed genes. Interestingly, the alcohol metabolic process biological category had the highest number of upregulated genes, and the enzyme group in this category may play an important role in the mechanisms of secondary metabolite detoxification. Hydrolytic enzymes, such as endoglucanases and a pectate lyase, were also identified, as well as some proteases. In conclusion, our research was conducted mainly to explain how the vascular tissue of a recognized host of the ambrosia complex responds during F. kuroshium infection since Fusarium dieback is an ambrosia beetle-vectored disease and many variables facilitate its establishment.


2020 ◽  
Author(s):  
Xinlu Yuan ◽  
Jianjun Diao ◽  
Anqing Du ◽  
Song Wen ◽  
Ligang Zhou ◽  
...  

Abstract Background: Nonalcoholic fatty liver disease (NAFLD) is primarily characterized by the hepatic cholesterol accumulation. Circular RNA (circRNA), one of noncoding RNA, involves in many liver diseases progression. However, no recent studies on circRNA expression profiles in NAFLD have been reported previously.Methods: A NAFLD mouse model was constructed by providing high-fat diet (HFD) for 32 weeks. The circRNAs expression profile in normal mice and NAFLD mice were determined using high-output RNA sequencing method and bioinformatics methods, while the differentially expressed circRNAs were confirmed using Sanger sequencing and qRT-PCR. The circRNA-miRNA network was also predicted. The biological functions of circRNAs were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).Results: The results demonstrated the successful construction of NAFLD mice model by immunohistology and serology assay. In total, 93 dysregulated circRNAs were observed, including 57 upregulated circRNAs and 36 downregulated circRNAs, in the NAFLD group. The circRNA-miRNA network revealed the complex interaction between circRNAs and its potential miRNA targets in NAFLD. The characteristic of tissue-specific expression in circRNA was demonstrated. The differentially expressed circRNAs with important biological function were also annotated using GO and KEGG. Both DDAH1 and VAV3 genes were found to be associated with the NAFLD development.Conclusions: Taken together, this study demonstrated the circRNAs expression profile and features in NAFLD, which may provide potential biological markers for the pathogenesis of NAFLD.


2018 ◽  
Author(s):  
Matthew Haas ◽  
Martin Mascher ◽  
Claudia Castell-Miller ◽  
Brian J. Steffenson

AbstractSpot blotch, caused byBipolaris sorokiniana(Sacc.) Shoem., is an economically important disease affecting barley (Hordeum vulgareL.). The disease has largely been controlled in the Upper Midwest region of the USA through a suite of quantitative trait loci (QTL) termed the Midwest Six-rowed Durable Resistance Haplotype (MSDRH). These QTL have been bred into all six-rowed Midwest barley cultivars, including the widely used cultivar Morex. We identified a gamma ray- induced Morex mutant (MUT) that exhibits spot blotch susceptibility at the seedling stage. This mutant also spontaneously develops extremely large necrotic lesions in the absence of the pathogen at the adult plant stage. Spot blotch susceptibility at the seedling stage and necrotic lesion formation at the adult plant stage are highly correlated. To start dissecting the molecular responses underlying the observed symptoms at the seedling stage, we conducted a time course RNA-seq experiment comparing the wild type (WT) and the mutant (MUT) Morex at 12, 24 and 36 h afterB. sorokinianainoculation. Mock-inoculated controls were also included. A total of 10,772 and 11,530 genes were differentially expressed between treatments for WT and MUT genotypes, respectively, while 277 and 195 genes were differentially expressed between fungal and mock-inoculated genotypes, respectively. The transcript expression profiles of WT and MUT Morex samples were similar for most treatments. Two genes whose expression was putatively knocked out in the MUT were identified: HORVU3Hr1G019920 (glycine-rich protein) and HORVU5Hr1G120850 (Long- chain-fatty-acid—CoA ligase 1). The latter appears to be genetically intact, but not expressed. Collectively, these data suggest that MUT susceptibility toB. sorokinianais a result of minor, rather than major, differences in the defense responses.


Sign in / Sign up

Export Citation Format

Share Document