scholarly journals Electrical, Photoluminescence and Optical Investigation of ZnO Nanoparticles Sintered at Different Temperatures

Author(s):  
Ahmed Sedky ◽  
Atif Ali ◽  
H.H Somaily ◽  
H Algarni

Abstract We report here structural, electrical, photoluminescence (PL), and optical investigations of ZnO nanoparticles. The ZnO samples are initially sintered at various temperatures (T s ) (600-1200 o C) temperatures and their size is reduced twice to nanoscale by using ball friction at 200 rpm rotational speed and 30 minutes duration. It is found that the T s do not influence the well-known peaks associated with the ZnO hexagonal structure, whereas the constants of the lattice and the average crystallite diameters are affected. Although the nonlinear area is observed for all samples in the I-V curves, the breakdown field E B and nonlinear coefficient β are moved to lower values as T s increases, while the residual voltage K r and nonlinear conductivity (σ 2 ) are increased. The empirical relations for K r , E B , and β as a function of T s are; K r = 0.004 T s – 0.487, E B = -1.786T s +2559.5 and β = -0.052 T s +75.19. On the other hand, a maximum UV absorption shift (A max ) is obtained at 412 nm, 400 nm, 384 nm, and 326 nm as the T s increases up to 1200 o C. For each sample, two different energy band gap values are obtained; the first is called the basic bandgap (E gh ) and its value above 3 eV, while the second is called the optical band gap (E gL ), and its value below 2.1 eV. Moreover, the empirical relations of them are E gh = 0.002 T s - 0.24, E gl = -0.0033 T s +5.242 and ∆E = - 0.0015 T s +5.002. Furthermore, the values of (N/m*) and lattice dielectric constant ε L are increased by increasing T s up to 1200 o C, while the vice is versa for the interatomic distance R. The dielectric loss tan δ is almost linear above 4 eV for all samples, and it decreases sharply as the T s increases. The optical and electrical conductivities σ opt and σ ele are decreased as the T s increases up to 1200 o C. Finally, the characteristic of UV band edges against the optimum value of PL intensity for the samples shows 8-continuous peaks. Furthermore, the PL intensity of the peaks is decreased by increasing T s and also by shifting the UV wave number towards the IR region.

2019 ◽  
Vol 2 (2) ◽  
pp. 20-31 ◽  
Author(s):  
Susan A Amin

We report here structural, electrical and dielectric properties of ZnO varistors prepared with two different particle sizes for initial starting oxides materials (5 µm and 200 nm). It is found that the particle size of ZnO does not influence the hexagonal wurtzite structure of ZnO, while the lattice parameters, crystalline diameter, grain size and Zn-O bond length are affected. The nonlinear coefficient, breakdown field and barrier height are decreased from 18.6, 1580 V/cm and 1.153 eV for ZnO micro to 410 V/cm, 7.26 and 0.692 eV for ZnO nano.  While, residual voltage and electrical conductivity of upturn region are increased from 2.08 and 2.38x10-5 (Ω.cm)-1 to 4.55 and 3.03x10-5 (Ω.cm)-1. The electrical conductivity increases by increasing temperature for both varistors, and it is higher for ZnO nano than that of ZnO micro.  The character of electrical conductivity against temperature is divided into three different regions over the temperature intervals as follows; (300 K ≤ T ≤ 420 K), (420 K ≤ T ≤ 580 K) and (580 K ≤ T ≤ 620 K), respectively. The activation energy is increased in the first region from 0.141 eV for ZnO micro to 0.183 eV for ZnO nano and it is kept nearly constant in the other two regions. On the other hand, the average conductivity deduced through dielectric measurements is increased from 2.54x10-7 (Ω.cm)-1 for ZnO micro to 49x10-7 (Ω.cm)-1. Similar behavior is obtained for the conductivities of grains and grain boundaries. The dielectric constant decreases as the frequency increases for both varistors, and it is higher for ZnO nano than that of ZnO micro. These results are discussed in terms of free excited energy and strength of link between grains of these varistors.


2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


2015 ◽  
Vol 161 ◽  
pp. 275-280 ◽  
Author(s):  
Mohd. Arshad ◽  
Mohd. Meenhaz Ansari ◽  
Arham S. Ahmed ◽  
Pushpendra Tripathi ◽  
S.S.Z. Ashraf ◽  
...  

2013 ◽  
Vol 829 ◽  
pp. 784-789 ◽  
Author(s):  
Mahmoud Zolfaghari ◽  
Mahshid Chireh

ZnO belongs to the II-VI semiconductor group with a direct band-gap of 3.2-3.37 eV in 300K and a high exciton binding energy of 60 meV. It has good transparency, high electron mobility, wide, and strong room-temperature luminescence. These properties have many applications in a wide area of emerging applications. Doping ZnO with the transition metals gives it magnetic property at room temperature hence making it multifunctional material, i.e. coexistence of magnetic, semiconducting and optical properties. The samples can be synthesized in the bulk, thin film, and nanoforms which show a wide range of ferromagnetism properties. Ferromagnetic semiconductors are important materials for spintronic and nonvolatile memory storage applications. Doping of transition metal elements into ZnO offers a feasible means of tailoring the band gap to use it as light emitters and UV detector. As there are controversial on the energy gap value due to change of lattice parameters we have synthesized Mn-doped ZnO nanoparticles by co-precipitation method with different concentrations to study the effect of lattice parameters changes on gap energy. The doped samples were studied by XRD, SEM, FT-IR., and UV-Vis. The XRD patterns confirm doping of Mn into ZnO structure. As Mn concentrations increases the peak due to of Mn impurity in FT-IR spectra becomes more pronounces hence confirming concentrations variation. We find from UV-Vis spectra that the gap energy due to doping concentration increases due to the Goldschmidt-Pauling rule this increase depends on dopant concentrations and increases as impurity amount increases.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
A. Sedky ◽  
E. El-Suheel

A comparative study between effects of Mn and Al on the properties of ZnO varistor sintered at 1200 is investigated by XRD, SEM hardness, and I-V measurements. Although both Mn and Al do not influence the well-known peaks related to wurtzite structure of ZnO ceramics, some other unknown peaks could be formed at higher doping content (). Also, the shape and size of grains are clearly different for both dopants. Average crystalline diameters, deduced from XRD analysis, are between 42 nm and 62 nm, which are 50 times lower than those obtained from SEM micrographs, while the oxygen vacancies deduced from EDAX analysis, are gradually decreased by doping content for both dopants. Interestingly, the values of breakdown field, nonlinear coefficient and barrier height are found to be higher in Mn samples as compared to Al samples, while the opposite is reported for leakage currents, hardness, and electrical conductivities. The values of are changed from 2.67 V/cm to 41.67 V/cm for Al, and from 1928 V/cm to 6571 V/cm for Mn. The conductivity of Al samples is higher than that of ZnO, and it is nearly (103–105) times the conductivity of Mn samples. These results are discussed in terms of the difference of magnetic moment and valence state between these two additives.


2019 ◽  
Vol 9 (2) ◽  
pp. 334-344 ◽  
Author(s):  
Mohammad Mansoob Khan ◽  
Nurin Hayatus Saadah ◽  
Mohammad Ehtisham Khan ◽  
Mohammad Hilni Harunsani ◽  
Ai Ling Tan ◽  
...  

2014 ◽  
Vol 975 ◽  
pp. 168-172
Author(s):  
Tiago Delbrücke ◽  
Igor Schmidt ◽  
Sergio Cava ◽  
Vânia Caldas Sousa

The addition of different dopants affects the densification and electrical properties of TiO2 based varistor ceramics. The nonlinear current (I) and voltage (V) characteristics of titanium dioxide are examined when doped with small quantities (0.5-2 at.%) of strontium oxide. This paper discusses the electrical properties of such an SrO doped TiO2 system, and demonstrates that some combinations produce electrical properties suitable for use as low voltage varistors. The high value of the nonlinear coefficient (α) (6.6), the breakdown field strength (Eb) (328 V/cm) and the leakage current (Ir) (0.22 mA/cm2) obtained in a system newly doped with SrO, are all adequate properties for application in low voltage varistors.


Optik ◽  
2019 ◽  
Vol 192 ◽  
pp. 162942 ◽  
Author(s):  
Long Huang ◽  
Yihua Sun ◽  
Mingbo Li ◽  
Yasha Yi ◽  
Lihua Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document