scholarly journals Structural and Electrical Properties of ZnO Varistor with Different Particle Size for Initial Oxides Materials

2019 ◽  
Vol 2 (2) ◽  
pp. 20-31 ◽  
Author(s):  
Susan A Amin

We report here structural, electrical and dielectric properties of ZnO varistors prepared with two different particle sizes for initial starting oxides materials (5 µm and 200 nm). It is found that the particle size of ZnO does not influence the hexagonal wurtzite structure of ZnO, while the lattice parameters, crystalline diameter, grain size and Zn-O bond length are affected. The nonlinear coefficient, breakdown field and barrier height are decreased from 18.6, 1580 V/cm and 1.153 eV for ZnO micro to 410 V/cm, 7.26 and 0.692 eV for ZnO nano.  While, residual voltage and electrical conductivity of upturn region are increased from 2.08 and 2.38x10-5 (Ω.cm)-1 to 4.55 and 3.03x10-5 (Ω.cm)-1. The electrical conductivity increases by increasing temperature for both varistors, and it is higher for ZnO nano than that of ZnO micro.  The character of electrical conductivity against temperature is divided into three different regions over the temperature intervals as follows; (300 K ≤ T ≤ 420 K), (420 K ≤ T ≤ 580 K) and (580 K ≤ T ≤ 620 K), respectively. The activation energy is increased in the first region from 0.141 eV for ZnO micro to 0.183 eV for ZnO nano and it is kept nearly constant in the other two regions. On the other hand, the average conductivity deduced through dielectric measurements is increased from 2.54x10-7 (Ω.cm)-1 for ZnO micro to 49x10-7 (Ω.cm)-1. Similar behavior is obtained for the conductivities of grains and grain boundaries. The dielectric constant decreases as the frequency increases for both varistors, and it is higher for ZnO nano than that of ZnO micro. These results are discussed in terms of free excited energy and strength of link between grains of these varistors.

2018 ◽  
Vol 2 (1) ◽  

We report here structural and electrical properties of Zn0.95 M0.05O ceramic, M = Zn, Co and Mn. It is found that addition of magnetic doping did not influence the hexagonal wurtzite structure of ZnO. Furthermore, the lattice parameters ratio c/a for hexagonal distortion and the length of the bond parallel u to the c axis were nearly unaffected. The average crystalline diameters, deduced from XRD analysis are 83.75, 72.86 and 70.97 nm for Zn, Mn and Co, which are 15 times lower than those obtained from FESEM micrographs (1570, 1380 and 1150 nm). The breakdown field EB was decreased as the temperature increased, in the following order: Mn> Zn > Co. The nonlinear region was observed for all samples as the temperature increased up to 400 K and completely disappeared with further increase of temperature up to 500 K. The values of nonlinear coefficient, α were between 1.65 and 56 for all samples, in the following order: Mn> Zn > Co. Moreover, the electrical conductivity σ was gradually increased as the temperature increased up to 500 K, in the following order: Co > Zn > Mn. On the other hand, the activation energies were 0.194, 0.155 eV and 0.231 eV for all samples, in the following order Mn, Zn and Co. These results have been discussed in terms of valence states, magnetic moment and thermo-ionic emission which were produced by the doping, and controlling the potential barrier of ZnO.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 681 ◽  
Author(s):  
Abdullah Aljaafari ◽  
Ahmed Sedky

Herein, the effect of nanocrystal percentage in bulk-ZnO varistors was studied. The structure of ZnO nanocrystals was examined using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The XRD studies showed that the nanocrystals were indexed with the hexagonal wurtzite structure of ZnO nanostructures. The average crystallite size deduced from XRD analysis ranged between 135 and 273 nm, eight-fold lower than that of the nanoparticles observed in FE-SEM micrographs (1151–2214 nm). The percentage of nanocrystals added into the ZnO varistor was increased from 0 to 100%. Electrical measurements (I–V profiles) showed that the non-linear region, breakdown field, and activation energy were found to decrease with the addition of ZnO fine crystals up to 10% and then increased upon a further increase in fine crystals. However, the electrical conductivity measured at room temperature was improved, and the highest value of 2.11 × 10−5 was observed for 10% fine crystals and then decreased upon a further increase in the fine crystal concentration in bulk ZnO. The breakdown field decreased with the increase in the percentage of ZnO nanostructures in the varistor up to 10% and then increased upon the further addition of ZnO nanostructures. The nonlinear coefficient (α) was decreased from 18.6 for bulk ZnO and remained close to unity for the samples that contained fine crystals. The electrical conductivity was generally improved with the increase in the concentration of the ZnO fine crystals. The activation energy was found to be 128, 374, and 815 meV for the bulk samples and 164, 369, and 811 meV for the samples that contained 100% fine crystals for the three temperature regions of 300–420, 420–580, and 580–620 K, respectively. These results will provide a pathway toward the determination of a correlation between the electrical and microstructural properties of ZnO-based varistors for future device applications.


2007 ◽  
Vol 336-338 ◽  
pp. 384-386
Author(s):  
Gang Qin Shao ◽  
Jia Li ◽  
Yong Li ◽  
Xing Long Duan ◽  
Xiao Liang Shi ◽  
...  

YSZ-NiCr powder was synthesized by gel-reduction process at 850°C for 2 h. YSZ-NiCr cermet was fabricated by hot-press sintering at 1350°C for 1 h. The powder has a mean particle size of 42 nm and the sintered specimen has a fine and homogeneous microstructure with a mean crystalline size of 0.2 &m. The conductivity has a tendency to decrease with increasing temperature. This behavior can be accounted for that there are two conduction paths through the cermet, an electronic path through the Ni/Cr metal phase and an ionic path through the ZrO2-Y2O3 phase. The objective of this work is to give a possible improvement in the cermet anode of SOFC.


2007 ◽  
Vol 280-283 ◽  
pp. 381-384
Author(s):  
Xin Sheng Yang ◽  
Yu Wang ◽  
Liang Dong

CeO2-doped WO3 ceramics were fabricated by using nanometer WO3 and CeO2 powders as raw materials. The microstructure and electrical properties were studied. The ceramics have relatively low breakdown voltage and high dielectric constant. The nonlinear coefficient does not decrease with the increase of the ambient temperature. The electrical conductivity decreases with increasing temperature, indicating that the ceramics have metallic behavior instead of semiconducting behavior.


2021 ◽  
Author(s):  
Ahmed Sedky ◽  
Atif Ali ◽  
H.H Somaily ◽  
H Algarni

Abstract We report here structural, electrical, photoluminescence (PL), and optical investigations of ZnO nanoparticles. The ZnO samples are initially sintered at various temperatures (T s ) (600-1200 o C) temperatures and their size is reduced twice to nanoscale by using ball friction at 200 rpm rotational speed and 30 minutes duration. It is found that the T s do not influence the well-known peaks associated with the ZnO hexagonal structure, whereas the constants of the lattice and the average crystallite diameters are affected. Although the nonlinear area is observed for all samples in the I-V curves, the breakdown field E B and nonlinear coefficient β are moved to lower values as T s increases, while the residual voltage K r and nonlinear conductivity (σ 2 ) are increased. The empirical relations for K r , E B , and β as a function of T s are; K r = 0.004 T s – 0.487, E B = -1.786T s +2559.5 and β = -0.052 T s +75.19. On the other hand, a maximum UV absorption shift (A max ) is obtained at 412 nm, 400 nm, 384 nm, and 326 nm as the T s increases up to 1200 o C. For each sample, two different energy band gap values are obtained; the first is called the basic bandgap (E gh ) and its value above 3 eV, while the second is called the optical band gap (E gL ), and its value below 2.1 eV. Moreover, the empirical relations of them are E gh = 0.002 T s - 0.24, E gl = -0.0033 T s +5.242 and ∆E = - 0.0015 T s +5.002. Furthermore, the values of (N/m*) and lattice dielectric constant ε L are increased by increasing T s up to 1200 o C, while the vice is versa for the interatomic distance R. The dielectric loss tan δ is almost linear above 4 eV for all samples, and it decreases sharply as the T s increases. The optical and electrical conductivities σ opt and σ ele are decreased as the T s increases up to 1200 o C. Finally, the characteristic of UV band edges against the optimum value of PL intensity for the samples shows 8-continuous peaks. Furthermore, the PL intensity of the peaks is decreased by increasing T s and also by shifting the UV wave number towards the IR region.


2013 ◽  
Vol 14 (3) ◽  
Author(s):  
Eriawan Rismana ◽  
Susi Kusumaningrum ◽  
Olivia Bunga P ◽  
Idah Rosidah ◽  
Marhamah Marhamah

The chitosan – Garcinia Mangostana extract nanoparticles has been prepared by ionic gelation reaction by mixture 0.2 % chitosan solution in acetic acid with Garcinia Mangostana extract and it’s continued by reaction process with 0.1 % sodium tripolyphosphate. The particle size of material was determined by Particle Size Analyzer (PSA) that it showed in the range of 200 – 500 nm. The color, pH, water, α- mangostin, mercury, arsenic, cadmium, lead, totally microbe aerobic, totally mold and yeast, and solvent residue contents of nanoparticles were also examined by many methods that these resulted are yellow, 4.50 – 5.50, 89 – 90 %, 1.05 %, < 0.005 ppm, < 0.01 ppm, < 0.01 ppm, < 0.05 ppm, < 10 CFU/g, < 10 CFU/g and not detected, respectively. The other characterization was also observed that it’sincluded stability andTLC chromatogram. A mixture of nanoparticles with cosmetics bases was showed that it’s increased stability, homogeneity and easy to formed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Shen ◽  
Qiang Zeng

AbstractIn the present paper, with using diverse methods (including the SEM, the XRD, the TPO, the FTIR, and the TGA) , the authors analysed samples of the major coal seam in Dahuangshan Mining area with different particle sizes and with different heated temperatures (from 50 to 800 °C at regular intervals of 50 °C). The results from SEM and XRD showed that high temperature and high number of pores, fissures, and hierarchical structures in the coal samples could facilitate oxidation reactions and spontaneous combustion. A higher degree of graphitization and much greater number of aromatic microcrystalline structures facilitated spontaneous combustion. The results from TPO showed that the oxygen consumption rate of the coal samples increased exponentially with increasing temperature. The generation rates of different gases indicated that temperatures of 90 °C or 130 °C could accelerate coal oxidation. With increasing temperature, the coal oxidation rate increased, and the release of gaseous products was accelerated. The FTIR results showed that the amount of hydroxide radicals and oxygen-containing functional groups increased with the decline in particle size, indicating that a smaller particle size may facilitate the oxidation reaction and spontaneous combustion of coal. The absorbance and the functional group areas at different particle sizes were consistent with those of the heated coal samples, which decreased as the temperature rose. The results from TGA showed that the characteristic temperature T3 declined with decreasing particle size. After the sample with 0.15–0.18 mm particle size was heated, its carbon content decreased, and its mineral content increased, inhibiting coal oxidation. This result also shows that the activation energy of the heated samples tended to increase at the stage of high-temperature combustion with increasing heating temperature.


2019 ◽  
Vol 81 (3) ◽  
Author(s):  
N. Masdiana ◽  
M. Rashid ◽  
S. Hajar ◽  
M. R. Ammar

TrikotAC filter aids is a combination of a pre-coating material PreKot™ with two adsorbents; activated carbon and lime and their characteristics were investigated in this study. TrikotAC was formulated into three different weight ratios of 5:1:94, 10:1:89 and 10:5:85, respectively. The relationship between adsorption properties and characteristics of the formulated materials particle size distribution, particle density, bulk density, and BET surface area were investigated. The results showed that the adsorption capacity for TrikotAC 10:5:85 (11.88 mg/g) was higher than for the other formulated filter aids samples, and the formulated filter aids material TrikotAC showed promising characteristic as a filter aids and adsorbent for organic compound in fabric filtration system.


Clay Minerals ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 453-465 ◽  
Author(s):  
I. Gonzalez ◽  
E. Galan ◽  
A. Miras ◽  
P. Aparicio

AbstractAn attempt has been made to assess new potential applications for the Bailén clays, traditionally used for manufacturing bricks, based on mineralogical, chemical, particle size, plasticity and firing results. Raw materials and mixtures used by the local factory were selected and tested with the addition of some diatomite, feldspar or kaolin. Based on their properties, clay materials from Bailén might be suitable for making porous red wall tiles, clinker, vitrified red floor tiles and porous light-coloured wall tiles by pressing; the first could be manufactured from the raw materials and mixtures currently used by the local manufactures. On the other hand, stoneware shaped by extrusion, such as perforated bricks, facing bricks and roofing tiles, can be also manufactured from the mixtures used at the factory if they contain 20-25% carbonate and small amounts of iron oxides; lightweight bricks require black and yellow clays with diatomite.


Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 23 ◽  
Author(s):  
Mohammad Reza Neyshabouri ◽  
Mehdi Rahmati ◽  
Claude Doussan ◽  
Boshra Behroozinezhad

Unsaturated soil hydraulic conductivity K is a fundamental transfer property of soil but its measurement is costly, difficult, and time-consuming due to its large variations with water content (θ) or matric potential (h). Recently, C. Doussan and S. Ruy proposed a method/model using measurements of the electrical conductivity of soil core samples to predict K(h). This method requires the measurement or the setting of a range of matric potentials h in the core samples—a possible lengthy process requiring specialised devices. To avoid h estimation, we propose to simplify that method by introducing the particle-size distribution (PSD) of the soil as a proxy for soil pore diameters and matric potentials, with the Arya and Paris (AP) model. Tests of this simplified model (SM) with laboratory data on a broad range of soils and using the AP model with available, previously defined parameters showed that the accuracy was lower for the SM than for the original model (DR) in predicting K (RMSE of logK = 1.10 for SM v. 0.30 for DR; K in m s–1). However, accuracy was increased for SM when considering coarse- and medium-textured soils only (RMSE of logK = 0.61 for SM v. 0.26 for DR). Further tests with 51 soils from the UNSODA database and our own measurements, with estimated electrical properties, confirmed good agreement of the SM for coarse–medium-textured soils (<35–40% clay). For these textures, the SM also performed well compared with the van Genuchten–Mualem model. Error analysis of SM results and fitting of the AP parameter showed that most of the error for fine-textured soils came from poorer adequacy of the AP model’s previously defined parameters for defining the water retention curve, whereas this was much less so for coarse-textured soils. The SM, using readily accessible soil data, could be a relatively straightforward way to estimate, in situ or in the laboratory, K(h) for coarse–medium-textured soils. This requires, however, a prior check of the predictive efficacy of the AP model for the specific soil investigated, in particular for fine-textured/structured soils and when using previously defined AP parameters.


Sign in / Sign up

Export Citation Format

Share Document