scholarly journals LncRNA SNHG11 Promotes Temozolomide Resistance in Glioblastoma via Promoting MGMT Expression

Author(s):  
Tao Ji ◽  
Xiao Lyu ◽  
Yongping You

Abstract Background Acquired TMZ resistance is considered as the main reason for the poor prognosis of glioblastoma (GBM) patients. However, underlying mechanism remains unknown. Long noncoding RNAs (lncRNAs) have emerged as important regulators in multiple biological processes. Methods SNHG11 expression in cells and GBM tissues was measured using qRT-PCR. In vitro studies, including CCK-8, colony formation assay, flow cytometry and western blot, were employed to measure the role of SNHG11. Interaction between miR-7-5p, SNHG11, and IRS2 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. CHIP assays were used to measure the role of SNHG11/miR-7-5p/IRS2 axis on modulating the H3K9 acetylation of MGMT. Results SNHG11 overexpression in GBM tissues contributes to TMZ resistance. In vitro and in vivo studies confirmed that SNHG11 promoted TMZ resistance in GBM cells. In addition, SNHG11 conferred TMZ resistance through increasing MGMT expression. Furthermore, SNHG11 could function as ceRNA by sponging miR-7-5p, which led to increased IRS2 expression. SNHG11/miR-7-5p/IRS2 axis increased MGMT expression by promoting the acetylation of H3K9 in MGMT promoter regions. Conclusion Taken together, our results revealed that targeting SNHG11 is a potential therapy to overcome TMZ resistance. And SNHG11 in GBM tissues is a potential biomarker for predicting response to TMZ.

Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nuoya Li ◽  
Lei Wu ◽  
Xingye Zuo ◽  
Huilong Luo ◽  
Yanling Sheng ◽  
...  

Gastric cancer (GC) is one of the most common malignant tumors all over the world. And recurrence and metastasis are still the main causes of low survival rate for advanced GC. USP1 has been shown overexpressed in multiple cancers, which indicate its important biomarker in tumorigenesis and development. Our study is aimed at defining the exact role of USP1 on GC metastasis and the underlying mechanism. USP1 was firstly found overexpressed in GC tissues and relatively high-expression levels conferred poor survival rates. Then, real-time cellular analysis (RTCA) showed that USP1 knockdown inhibited GC metastasis both in vitro and in vivo. Mechanically, we demonstrated that USP1 promoted GC metastasis via upregulating ID2 expression and further confirmed that USP1 stabilized ID2 expression through deubiquitinating ID2 in GC. In conclusion, our study showed that USP1 promoted GC metastasis via stabilizing ID2 expression, which provides a potential biomarker and therapy target for GC.


2021 ◽  
Author(s):  
Jiahui Guo ◽  
Tingting Liu ◽  
Zhongyan Shan ◽  
Weiping Teng

Abstract Background: Circular RNA (circRNA) has been reported to play multiple roles in a variety of cancers. However, the role of circRNA in papillary thyroid carcinoma (PTC) remains mostly unknown. Methods: The expression, function and potential molecular mechanisms of hsa_circ_0000839 in PTC in vitro were evaluated by quantitative RT-PCR, western blot, flow cytometry, CCK8, Edu, RNA-sequencing, luciferase reporter, and RNA immunoprecipitation assay. The function of hsa_circ_0000839 in PTC in vivo was evaluated by xenograft tumors assay.Results: Hsa_circ_0000839 was significantly downregulated in PTC tissues and plasma from patients with PTC, and its downregulation was correlated with larger tumor size in patients with PTC. The role of hsa_circ_0000839 in the proliferation of PTC cell lines was evaluated in both vitro and in vivo. Mechanistically, hsa_circ_0000839 regulated the level of CDC27 via sponging miR-149-5p in PTC. Conclusions: Hsa_circ_0000839 might act as a tumor suppressor of PTC through the hsa_circ_0000839/miR-149-5p/CDC27 axis. Hsa_circ_0000839 could serve as a potential biomarker and therapeutic target for patients with PTC.


Author(s):  
Dong Yang ◽  
Tianyang Xu ◽  
Lin Fan ◽  
Kaiyuan Liu ◽  
Guodong Li

Abstract Background Although cisplatin-based chemotherapy represents the standard regimen for osteosarcoma (OS), OS patients often exhibit treatment failure and poor prognosis due to chemoresistance to cisplatin. Emerging research has highlighted the tumor suppressive properties of microRNAs (miRNAs or miRs) in various human cancers via the inhibition of the histone demethylase jumonji domain containing protein 2C (JMJD2C). As a coactivator for hypoxia-inducible factor 1α (HIF1α), JMJD2C targets hairy and enhancer of split-1 (HES1) gene. Hence, the current study aimed to elucidate the role of miR-216b in OS cell cisplatin resistance to identify the underlying mechanism of miR-216b regulating the JMJD2C//HIF1α/HES1 signaling. Methods Tumor and paracancerous tissues were collected from OS patients to determine the expression patterns of miR-216b and JMJD2C. After ectopic expression and knockdown experiments in the OS cells, CCK-8 assay and flow cytometry were employed to determine cell viability and apoptosis. The interaction of miR-216b, JMJD2C, HIF1α and HES1 was subsequently determined by dual luciferase reporter, co-immunoprecipitation (IP) and ChIP-qPCR assays. In vivo experiments were conducted to further verify the role of the miR-216b in the resistance of OS cells to cisplatin. Results miR-216b expression was reduced in the OS tissues, as well as the MG63 and SaOS-2 cells. Heightened miR-216b expression was found to be positively correlated with patient survival, and miR-216b further enhanced cisplatin-induced apoptosis of MG63 and SaOS-2 cells. Mechanistically, miR-216b inhibited JMJD2C expression by binding to its 3’UTR. Through interaction with HIF1α, JMJD2C removed the H3K9 methylation modification at the HES1 promoter region, leading to upregulation of HES1 in vitro. Furthermore, miR-216b was observed to increase the tumor growth in nude mice in the presence of cisplatin treatment. HES1 overexpression weakened the effects of miR-216b in MG63 and SaOS-2 cells and in nude mouse xenografts. Conclusion Overall, miR-216b enhanced the sensitivity of OS cells to cisplatin via downregulation of the JMJD2C/HIF1α/HES1 signaling axis, highlighting the capacity of miR-216b as an adjunct to cisplatin chemotherapy in the treatment of OS.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kun Zhao ◽  
Chuanxi Yang ◽  
Jing Zhang ◽  
Wei Sun ◽  
Bin Zhou ◽  
...  

AbstractMyocardial infarction (MI), one of the most severe types of heart attack, exerts a strong negative effect on heart muscle by causing a massive and rapid loss of cardiomyocytes. However, the existing therapies do little to improve cardiac regeneration. Due to the role of methyltransferase-like 3 (METTL3) in the physiological proliferation of cardiomyocytes, we aimed to determine whether METTL3 could also promote cardiomyocyte proliferation under pathological conditions and to elucidate the underlying mechanism. The effects of METTL3 on cardiomyocyte proliferation and apoptosis were investigated in an in vivo rat model of MI and in an in vitro model of neonatal rat cardiomyocytes (NRCMs) exposed to hypoxia. We found that METTL3 expression was downregulated in hypoxia-exposed NRCMs and MI-induced rats. Furthermore, METTL3 pretreatment enhanced cardiomyocyte proliferation and inhibited cardiomyocyte apoptosis under hypoxic or MI conditions, and silencing METTL3 had the opposite effects. Additionally, METTL3 overexpression upregulated miR-17-3p expression. The miR-17-3p agomir mimicked the pro-proliferative and antiapoptotic effects of METTL3 in hypoxia-exposed cells or rats with MI, while the miR-17-3p antagomir blocked these effects. Additionally, pretreatment with the RNA-binding protein DGCR8 also hampered the protective role of METTL3 in hypoxia-exposed cells. Overall, the current study indicated that METTL3 could improve cardiomyocyte proliferation and subsequently ameliorate MI in rats by upregulating proliferation-related miR-17-3p in a DGCR8-dependent pri-miRNA-processing manner.


Author(s):  
Yu Zhang ◽  
Hailin Liu ◽  
Qiang Zhang ◽  
Zhenfa Zhang

Lung adenocarcinoma (LUAD) is a common type of malignancy of lung cancers. Long intergenic non-coding RNAs (lincRNAs) have emerged as crucial regulators of various cancers, including LUAD. LINC01006 is a newly discovered lncRNA whose function in LUAD remains to be explored. This study is to explore the role of LINC01006 in LUAD. Quantitative real-time PCR (RT-qPCR) analysis and western blot were used to determine the expressions and protein levels respectively. Functional assays and animal experiments investigated the role of LINC01006 both in vivo and in vitro. Moreover, TOP/FOP assay was performed to detect the activation of Wnt/β-catenin signaling pathway. The interaction between LINC01006 and miR-129-2-3p/catenin beta 1 (CTNNB1) was explored by RNA binding protein immunoprecipitation (RIP), RNA pull down, luciferase reporter assays and rescue experiments. According to the results, LINC01006 was highly expressed in LUAD tissues and cell lines. LINC01006 knockdown significantly suppressed cell proliferative, migratory, epithelial-mesenchymal transition (EMT) capacities and the tumor development. Moreover, LINC01006 enhanced CTNNB1 via sequestering miR-129-2-3p and activated Wnt/β-catenin pathway in LUAD. Overall, LINC01006 promotes LUAD development via activating Wnt/β-catenin pathway, implying that LINC01006 might be a promising biomarker for LUAD treatment.


Author(s):  
Wei Wang ◽  
Nian Liu ◽  
Li Xin ◽  
Yanfei Ruan ◽  
Xin Du ◽  
...  

AbstractHeart often undergoes mal-remodeling and hypertrophic growth in response to pathological stress. MiRNAs can regulate the cardiac function and participate in the regulation of cardiac hypertrophy. The present study aims at identifying the role of miR-296-5p in cardiac hypertrophy and further the underlying mechanism in hypertrophic cascades. Mice with cardiac hypertrophy were established by transverse aortic constriction (TAC). Cardiac hypertrophy in cardiomyocytes was induced by angiotensin II. Expression of miR-296-5p and its target gene CACNG6 was examined in cardiomyocytes transfected by miRNA. The expression of miR-296-5p was upregulated in mice with TAC surgery. The inhibition of miR-296-5p attenuated cardiac hypertrophy both in vitro and in vivo. And dual-luciferase reporter assays showed CACNG6 was the direct target of miR-296-5p, which modulated the expression of calcium signaling. MiR-296-5p was found to aggravate cardiac hypertrophy by targeting CACNG6, which suggests inhibition of miR-296-5p might have clinical potential to suppress cardiac hypertrophy and heart failure.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhisheng Long ◽  
Feipeng Gong ◽  
Yuxu Li ◽  
Zhiqiang Fan ◽  
Jingtang Li

Abstract Background Circular RNAs (circRNAs) are important regulators in the pathogenesis of diseases and affects the occurrence and development of diseases. However, the role of circRNAs in osteosarcoma (OS) has not been fully elucidated. Methods The expression of circ_0000285, miR-409-3p and insulin-like growth factor binding protein 3 (IGFBP3) was detected using quantitative real-time PCR (qRT-PCR). The protein level of IGFBP3 was measured using western blot. CCK-8 and colony formation assays were used to determine cell proliferation. Flow cytometry was applied to measure cell cycle and cell apoptosis. Transwell assay was used to assess cell invasion and migration. Dual-luciferase reporter assay and RNA Binding Protein Immunoprecipitation (RIP) assay were performed to determine the relationship among circ_0000285, miR-409-3p and IGFBP3. The animal experiments were performed to determine the function of circ_0000285 in vivo. Results In this study, we found that the expression of circ_0000285 was significantly increased in OS tissues and cells and was enriched in the cytoplasm. Knockdown of circ_0000285 inhibited OS growth in vitro and in vivo. Moreover, miR-409-3p was a target miRNA of circ_0000285 and miR-409-3p targets to IGFBP3 in OS. Besides, circ_0000285 could promote proliferation, migration, invasion and inhibit apoptosis of osteosarcoma by miR-409-3p/IGFBP3 axis. Conclusion In this study, circ_0000285 regulated proliferation, migration, invasion and apoptosis of OS cells by miR-409-3p/IGFBP3 axis, implying that circ_0000285 was a potential target for OS therapy.


2021 ◽  
Author(s):  
Lili Han ◽  
Lin Wang ◽  
Fei Wu

Abstract The post-transcriptional of mRNA expression involved in the hepatocellular carcinoma (HCC) pathogenesis and progression need to be further explored. RBPs, the main undertaker of post-transcriptional regulatory process, has been shown to impact HCC carcinogenesis and progression. However, the role of RBP, RNA-binding motif 45 (RBM45) in hepatocarcinogenesis and its interaction with its potential target mRNA remains entirely unknown. The expression of RBM45 was significantly increased in HCC and was associated with poor clinicopathological features and clinical outcome of HCC patients. RBM45 promoted HCC cells growth, invasion, migration and EMT in vitro and in vivo. Mechanistically, RNA immunoprecipitation sequencing (RIP-seq) approach was utilized to screen the important differentially expressed RBM45 genes in HCC. Furthermore, RIP assay, pull-down assay and mRNA decay assay were carried out to uncover the effect of RBM45 on its downstream genes. And the results revealed that RBM45 mediated the stabilization of BCL2 and Twist1 mRNA via respectively binding to their 3`UTR. Further assay results suggested RBM45 promoted HCC growth and metastasis upon BCL2 and Twist1. In short, we unveiled a novel role of RBM45 in promoting hepatocarcinogenesis via the post-transcriptional regulation of BCL2 and Twist1 expression. The results proposes that RBM45 may serve as a potential therapeutic target for HCC.


Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document