scholarly journals Host reproductive cycle influences the pouch microbiota of wild Southern Hairy-nosed Wombats (Lasiorhinus latifrons)

2020 ◽  
Author(s):  
Sesilje Weiss ◽  
David Taggart ◽  
Ian Smith ◽  
Kristofer M Helgen ◽  
Raphael Eisenhofer

Abstract Background: Marsupials are born much earlier than placental mammals, with most crawling from the birth canal to the protective marsupium (pouch) to further their development. However, little is known about the microbiology of the pouch and how it changes throughout a marsupial’s reproductive cycle. Here, using stringent controls, we characterized the microbial composition of multiple body sites from 26 wild Southern Hairy-nosed Wombats (SHNWs), including pouch samples from animals at different reproductive stages. Results: Using qPCR of the 16S rRNA gene we found higher concentrations of microbial DNA in the pouch than in negative controls. We observed significant differences in microbial composition and diversity between the body sites tested, as well as between pouch samples from different reproductive stages. The pouches of reproductively active females had drastically lower microbial diversity (mean richness 19) compared to reproductively inactive females (mean richness 941), and were dominated by gram positive bacteria from the Actinobacteriota phylum (81.7-90.6%), with the dominant families classified as Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, and Dietziaceae. Three of the five most abundant sequences identified in reproductively active pouches had closest matches to microbes previously isolated from tammar wallaby pouches. Conclusions: This study represents the first contamination controlled investigation into the marsupial pouch microbiota, and sets a rigorous framework for future pouch microbiota studies. Our results suggest that SHNW pouches contain communities of microorganisms that are substantially altered by the host reproductive cycle. We recommend further investigation into the roles that pouch microorganisms may play in marsupial reproductive health and joey survival.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sesilje Weiss ◽  
David Taggart ◽  
Ian Smith ◽  
Kristofer M. Helgen ◽  
Raphael Eisenhofer

Abstract Background Marsupials are born much earlier than placental mammals, with most crawling from the birth canal to the protective marsupium (pouch) to further their development. However, little is known about the microbiology of the pouch and how it changes throughout a marsupial’s reproductive cycle. Here, using stringent controls, we characterized the microbial composition of multiple body sites from 26 wild Southern Hairy-nosed Wombats (SHNWs), including pouch samples from animals at different reproductive stages. Results Using qPCR of the 16S rRNA gene we detected a microbial community in the SHNW pouch. We observed significant differences in microbial composition and diversity between the body sites tested, as well as between pouch samples from different reproductive stages. The pouches of reproductively active females had drastically lower microbial diversity (mean ASV richness 19 ± 8) compared to reproductively inactive females (mean ASV richness 941 ± 393) and were dominated by gram positive bacteria from the Actinobacteriota phylum (81.7–90.6%), with the dominant families classified as Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, and Dietziaceae. Three of the five most abundant sequences identified in reproductively active pouches had closest matches to microbes previously isolated from tammar wallaby pouches. Conclusions This study represents the first contamination-controlled investigation into the marsupial pouch microbiota, and sets a rigorous framework for future pouch microbiota studies. Our results indicate that SHNW pouches contain communities of microorganisms that are substantially altered by the host reproductive cycle. We recommend further investigation into the roles that pouch microorganisms may play in marsupial reproductive health and joey survival.


2021 ◽  
Author(s):  
Sesilje Weiss ◽  
David Taggart ◽  
Ian Smith ◽  
Kristofer M Helgen ◽  
Raphael Eisenhofer

Abstract Background Marsupials are born much earlier than placental mammals, with most crawling from the birth canal to the protective marsupium (pouch) to further their development. However, little is known about the microbiology of the pouch and how it changes throughout a marsupial’s reproductive cycle. Here, using stringent controls, we characterized the microbial composition of multiple body sites from 26 wild Southern Hairy-nosed Wombats (SHNWs), including pouch samples from animals at different reproductive stages. Results Using qPCR of the 16S rRNA gene we detected a microbial community in the SHNW pouch. We observed significant differences in microbial composition and diversity between the body sites tested, as well as between pouch samples from different reproductive stages. The pouches of reproductively active females had drastically lower microbial diversity (mean ASV richness 19 ± 8) compared to reproductively inactive females (mean ASV richness 941 ± 393) and were dominated by gram positive bacteria from the Actinobacteriota phylum (81.7-90.6%), with the dominant families classified as Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, and Dietziaceae. Three of the five most abundant sequences identified in reproductively active pouches had closest matches to microbes previously isolated from tammar wallaby pouches. Conclusions This study represents the first contamination-controlled investigation into the marsupial pouch microbiota, and sets a rigorous framework for future pouch microbiota studies. Our results indicate that SHNW pouches contain communities of microorganisms that are substantially altered by the host reproductive cycle. We recommend further investigation into the roles that pouch microorganisms may play in marsupial reproductive health and joey survival.


2020 ◽  
Author(s):  
Sesilje Weiss ◽  
David Taggart ◽  
Ian Smith ◽  
Kristopher M Helgen ◽  
Raphael Eisenhofer

Abstract Background: Marsupials are born much earlier than placental mammals, with most crawling from the birth canal to the protective marsupium (pouch) to further their development. However, little is known about the microbiology of the pouch and how it changes throughout a marsupial’s reproductive cycle. Here, using stringent controls, we characterized the microbial composition of multiple body sites from 26 wild Southern Hairy-nosed Wombats (SHNWs), including pouch samples from animals at different reproductive stages. Results: Using qPCR of the 16S rRNA gene we found higher concentrations of microbial DNA in the pouch than in negative controls. We observed significant differences in microbial composition and diversity between the body sites tested, as well as between pouch samples from different reproductive stages. Three of the five most abundant taxa identified in reproductively active pouches had closest matches to microbes previously isolated from tammar wallaby pouches. Conclusions: Our results suggest that SHNW pouches contain communities of microorganisms that are altered by the host reproductive cycle. We recommend further investigation into the roles that pouch microorganisms may play in marsupial reproductive health and joey survival.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Xiao Bin Li ◽  
Xin Xin Huang ◽  
Chang Jiang Zang ◽  
Chen Ma ◽  
Kai Xu Chen ◽  
...  

Abstract Background There is little objective information concerning the effect of steam-flaked grains on foal’s growth performance and faecal microbiota. To determine the effects of steam-flaked grains on foal’s growth performance and faecal microbiota, faecal samples were collection from 18 foals which had been fed either corn, oat or barley diets over the 60 days of the experiment. Body weight and conformation measurements were collected. Next-generation sequencing of the V3 + V4 region of the 16 S rRNA gene was used to assess the microbial composition of faeces. Alpha diversity, Venn graph, Relative abundance and beta diversity are presented. Results There was a significantly higher larger increase in the body weight of those foals fed barley compared to either corn or oats. There were also significant changes in the Alpha diversity of the gut microbiota. The Shannon and Simpson indices were significantly higher in the barley fed group than those fed corn or oats. The Chao1 index was significantly higher in the oat fed group than the corn or barley fed groups. There were significant changes in the relative abundance of bacteria in the microbiota in terms of phylum, family and genus. The histogram of LDA value distribution showed that the 12 statistically different biomarkers of the bacteria were present. Tax4Fun function annotation clustering heat map showed that functional information was detected from 26 species of bacteria in faecal samples from the foals. Conclusions Differences by starch sources were found in overall growth of the foals and in the faecal microbiota if either supplementary corn, oat or barley was fed. Further studies are required to determine the potential impact of the changes in the microbiota on the health and development of foals fed cereal starch of different sources.


2021 ◽  
Author(s):  
XiaoBin Li ◽  
Xin Xin Huang ◽  
Chang Jiang Zang ◽  
Chen Ma ◽  
Kai Xu Chen ◽  
...  

Abstract BackgroundThere is little objective information concerning the effect of steam-flaked grains on foal’s growth performance and faecal microbiota.To determine the effects of steam-flaked grains on foal’s growth performance and faecal microbiota.Faecal samples were collection from 18 foals which had been fed corn, oat or barley diets over the 60 days of the experiment. Body weight and measurements were collected. Next-generation sequencing of the V3+V4 region of the 16S rRNA gene was used to assess the microbial composition of faeces. Alpha diversity, Venn graph, Relative abundance and beta diversity are presented.ResultsThere was a significantly higher increase in the body weight of those foals fed barley compared to either corn or oats, both in terms of the total weight gain and the daily weight gain (P=0.0185). There were also significant changes in the Alpha diversity. The Shannon and Simpson indices were higher in the barley fed group than those fed corn or oats (P<0.05, P<0.05, P<0.05 and P<0.05). The Chao1 index was higher in the oat fed group than the corn or barley fed groups (P<0.05 and P<0.05). There were significant changes in the relative abundance of bacteria in the microbiota in terms of phylum, family and genus. The histogram of LDA value distribution showed that the statistically different biomarkers of the bacteria was 12. Tax4Fun function annotation clustering heat map showed that functional information was detected from 26 species of bacteria in faecal samples from the foals.ConclusionsDifferences were seen in the faecal microbiota of foals fed either corn, oat or barley, and also differences in the overall growth of the foals. Different grains have different impact on faecal microbiota, which are mainly related to the grain sources. Further investigation is required to look at the potential impact of changes in the microbiota on the functional impact on foals when fed grains.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Enrique Zozaya-Valdés ◽  
Stephen Q. Wong ◽  
Jeanette Raleigh ◽  
Athena Hatzimihalis ◽  
Sarah Ftouni ◽  
...  

Abstract Background The human microbiome plays an important role in cancer. Accumulating evidence indicates that commensal microbiome-derived DNA may be represented in minute quantities in the cell-free DNA of human blood and could possibly be harnessed as a new cancer biomarker. However, there has been limited use of rigorous experimental controls to account for contamination, which invariably affects low-biomass microbiome studies. Results We apply a combination of 16S-rRNA-gene sequencing and droplet digital PCR to determine if the specific detection of cell-free microbial DNA (cfmDNA) is possible in metastatic melanoma patients. Compared to matched stool and saliva samples, the absolute concentration of cfmDNA is low but significantly above the levels detected from negative controls. The microbial community of plasma is strongly influenced by laboratory and reagent contaminants introduced during the DNA extraction and sequencing processes. Through the application of an in silico decontamination strategy including the filtering of amplicon sequence variants (ASVs) with batch dependent abundances and those with a higher prevalence in negative controls, we identify known gut commensal bacteria, such as Faecalibacterium, Bacteroides and Ruminococcus, and also other uncharacterised ASVs. We analyse additional plasma samples, highlighting the potential of this framework to identify differences in cfmDNA between healthy and cancer patients. Conclusions Together, these observations indicate that plasma can harbour a low yet detectable level of cfmDNA. The results highlight the importance of accounting for contamination and provide an analytical decontamination framework to allow the accurate detection of cfmDNA for future biomarker studies in cancer and other diseases.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katherine A. Partrick ◽  
Anna M. Rosenhauer ◽  
Jérémie Auger ◽  
Amanda R. Arnold ◽  
Nicole M. Ronczkowski ◽  
...  

AbstractSocial stress exacerbates anxious and depressive behaviors in humans. Similarly, anxiety- and depressive-like behaviors are triggered by social stress in a variety of non-human animals. Here, we tested whether oral administration of the putative anxiolytic probiotic strains Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces the striking increase in anxiety-like behavior and changes in gut microbiota observed following social defeat stress in Syrian hamsters. We administered the probiotic at two different doses for 21 days, and 16S rRNA gene amplicon sequencing revealed a shift in microbial structure following probiotic administration at both doses, independently of stress. Probiotic administration at either dose increased anti-inflammatory cytokines IL-4, IL-5, and IL-10 compared to placebo. Surprisingly, probiotic administration at the low dose, equivalent to the one used in humans, significantly increased social avoidance and decreased social interaction. This behavioral change was associated with a reduction in microbial richness in this group. Together, these results demonstrate that probiotic administration alters gut microbial composition and may promote an anti-inflammatory profile but that these changes may not promote reductions in behavioral responses to social stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kundi Yang ◽  
Mengyang Xu ◽  
Jingyi Cao ◽  
Qi Zhu ◽  
Monica Rahman ◽  
...  

AbstractEmerging evidence has highlighted the connection between exposure to air pollution and the increased risk of obesity, metabolic syndrome, and comorbidities. Given the recent interest in studying the effects of ultrafine particle (UFP) on the health of obese individuals, this study examined the effects of gastrointestinal UFP exposure on gut microbial composition and metabolic function using an in vivo murine model of obesity in both sexes. UFPs generated from light-duty diesel engine combustion of petrodiesel (B0) and a petrodiesel/biodiesel fuel blend (80:20 v/v, B20) were administered orally. Multi-omics approaches, including liquid chromatography–mass spectrometry (LC–MS) based targeted metabolomics and 16S rRNA gene sequence analysis, semi-quantitatively compared the effects of 10-day UFP exposures on obese C57B6 mouse gut microbial population, changes in diversity and community function compared to a phosphate buffer solution (PBS) control group. Our results show that sex-specific differences in the gut microbial population in response to UFP exposure can be observed, as UFPs appear to have a differential impact on several bacterial families in males and females. Meanwhile, the alteration of seventy-five metabolites from the gut microbial metabolome varied significantly (ANOVA p < 0.05) across the PBS control, B0, and B20 groups. Multivariate analyses revealed that the fuel-type specific disruption to the microbial metabolome was observed in both sexes, with stronger disruptive effects found in females in comparison to male obese mice. Metabolic signatures of bacterial cellular oxidative stress, such as the decreased concentration of nucleotides and lipids and increased concentrations of carbohydrate, energy, and vitamin metabolites were detected. Furthermore, blood metabolites from the obese mice were differentially affected by the fuel types used to generate the UFPs (B0 vs. B20).


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 472
Author(s):  
Yeong-Ji Oh ◽  
Ye-Rin Park ◽  
Jungil Hong ◽  
Do-Yup Lee

The light-emitting diode (LED) has been widely used in the food industry, and its application has been focused on microbial sterilization, specifically using blue-LED. The investigation has been recently extended to characterize the biotic and abiotic (photodynamic) effects of different wavelengths. Here, we investigated LED effects on kimchi fermentation. Kimchi broths were treated with three different colored-LEDs (red, green, and blue) or kept in the dark as a control. Multiomics was applied to evaluate the microbial taxonomic composition using 16S rRNA gene amplicon sequencing, and the metabolomic profiles were determined using liquid chromatography–Orbitrap mass spectrometry. Cell viability was tested to determine the potential cytotoxicity of the LED-treated kimchi broths. First, the amplicon sequencing data showed substantial changes in taxonomic composition at the family and genus levels according to incubation (initial condition vs. all other groups). The differences among the treated groups (red-LED (RLED), green-LED (GLED), blue-LED (BLED), and dark condition) were marginal. The relative abundance of Weissella was decreased in all treated groups compared to that of the initial condition, which coincided with the decreased composition of Lactobacillus. Compositional changes were relatively high in the GLED group. Subsequent metabolomic analysis indicated a unique metabolic phenotype instigated by different LED treatments, which led to the identification of the LED treatment-specific and common compounds (e.g., luteolin, 6-methylquinoline, 2-hydroxycinnamic acid, and 9-HODE). These results indicate that different LED wavelengths induce characteristic alterations in the microbial composition and metabolomic content, which may have applications in food processing and storage with the aim of improving nutritional quality and the safety of food.


Sign in / Sign up

Export Citation Format

Share Document