scholarly journals Inhibiting mir-29 and targeting ADAM12: lidocaine inhibits breast cancer development

2020 ◽  
Author(s):  
Gui Feng ◽  
Fei He

Abstract Breast cancer is the most common cancers among women in the world. For hundreds of years, researchers are devoted for developing new strategy against cancer. As a rapid and effective local anesthetic, lidocaine is reported having multiple-physiological functions in clinic treatment, such as anti-cancer and anti-inflammatory activity. Besides, the microRNAs (miRNAs) have been demonstrated to be involved in the cancer development, and the miRNA-29 family is abnormally expressed in a variety of cancers, which could not only regulate the cancer cell proliferation, migration and invasion, but also promote cancer cell apoptosis by binding to target proteins. However, the protective effect of lidocaine on breast cancer cells and the mechanism was still unclear. In the present study, the relative expression level of the miRNA-29 in cancer cells and tissues was measured with quantitative RT-PCR. Bioinformatic analysis was performed to predict the potential target of the miRNA-29 in breast cancer cells, and the luciferase reporter assay was employed to validate the direct binding of the target protein and the miRNA-29 in breast cancer cells. Cell Counting Kit-8 (CCK-8) and the Cell Apoptosis Assay Kit were utilized to analyze the cancer cell proliferation and apoptosis after lidocaine treatment.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yaohua Fan ◽  
Yan Li ◽  
Yuzhang Zhu ◽  
Guiping Dai ◽  
Dongjuan Wu ◽  
...  

Objectives. Breast cancer is the most common malignant tumor among females, and miRNAs have been reported to play an important regulatory role in breast cancer progression. This study aimed to explore the function and underlying molecular mechanism of miR-301b-3p in breast cancer. Methods. Differential analysis and survival analysis were performed based on the data accessed from the TCGA-BRCA dataset for identification of the target miRNA. Bioinformatics analysis was conducted to predict the downstream target gene of the miRNA. Real-time quantitative PCR was carried out to detect the expression of miR-301b-3p and nuclear receptor subfamily 3 group C member 2 (NR3C2). Western blot was used to assess the protein expression of NR3C2. Cell counting kit-8 assay was performed to evaluate the proliferation of breast cancer cells. Transwell assay was conducted to determine the migratory and invasive abilities of breast cancer cells. Dual-luciferase reporter assay was employed to verify the targeting relationship between miR-301b-3p and NR3C2. Results. miR-301b-3p was elevated in breast cancer cell lines and promoted cell proliferation, migration, and invasion in terms of its biological function in breast cancer. NR3C2 was validated as a direct target of miR-301b-3p via bioinformatics analysis and dual-luciferase reporter assay, and NR3C2 was downregulated in breast cancer cell lines. The rescue experiment indicated that NR3C2 was involved in the mechanism by which miR-301b-3p regulated the malignant phenotype of breast cancer cells. Conclusion. The present study revealed for the first time that miR-301b-3p could foster breast cancer cell proliferation, migration, and invasion by targeting NR3C2, unveiling that miR-301b-3p is a novel carcinogen in breast cancer.


2021 ◽  
pp. 096032712198942
Author(s):  
Xiaoxue Zhang ◽  
Xianxin Xie ◽  
Kuiran Gao ◽  
Xiaoming Wu ◽  
Yanwei Chen ◽  
...  

As one of the leading causes of cancer-related deaths among women, breast cancer accounts for a 30% increase of incidence worldwide since 1970s. Recently, increasing studies have revealed that the long non-coding RNA ILF3-AS1 is involved in the progression of various cancers. Nevertheless, the role of ILF3-AS1 in breast cancer remains largely unknown. In the present study, we found that ILF3-AS1 was highly expressed in breast cancer tissues and cells. ILF3-AS1 silencing inhibited breast cancer cell proliferation, migration and invasion, and promoted cell apoptosis. ILF3-AS1 bound with miR-4429 in breast cancer cells. Moreover, RAB14 was a downstream target of miR-4429, and miR-4429 expression was negatively correlated with RAB14 or ILF3-AS1 expression in breast cancer tissues. The result of rescue experiments demonstrated that overexpression of RAB14 can reverse the inhibitory effect of ILF3-AS1 knockdown on breast cancer cell proliferation, migration and invasion. Overall, ILF3-AS1 promotes the malignant phenotypes of breast cancer cells by interacting with miR-4429 to regulate RAB14, which might offer a new insight into the underlying mechanism of breast cancer.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Travis B. Salisbury ◽  
Gary Z. Morris ◽  
Justin K. Tomblin ◽  
Ateeq R. Chaudhry ◽  
Carla R. Cook ◽  
...  

Obesity increases human cancer risk and the risk for cancer recurrence. Adipocytes secrete paracrine factors termed adipokines that stimulate signaling in cancer cells that induce proliferation. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays roles in tumorigenesis, is regulated by exogenous lipophilic chemicals, and has been explored as a therapeutic target for cancer therapy. Whether exogenous AHR ligands modulate adipokine stimulated breast cancer cell proliferation has not been investigated. We provide evidence that adipocytes secrete insulin-like growth factor 2 (IGF-2) at levels that stimulate the proliferation of human estrogen receptor (ER) positive breast cancer cells. Using highly specific AHR ligands and AHR short interfering RNA (AHR-siRNA), we show that specific ligand-activated AHR inhibits adipocyte secretome and IGF-2-stimulated breast cancer cell proliferation. We also report that a highly specific AHR agonist significantly (P<0.05) inhibits the expression of E2F1, CCND1 (known as Cyclin D1), MYB, SRC, JAK2, and JUND in breast cancer cells. Collectively, these data suggest that drugs that target the AHR may be useful for treating cancer in human obesity.


2020 ◽  
Vol 21 (8) ◽  
pp. 2906
Author(s):  
Yih Ho ◽  
Zi-Lin Li ◽  
Ya-Jung Shih ◽  
Yi-Ru Chen ◽  
Kuan Wang ◽  
...  

Hormones and their receptors play an important role in the development and progression of breast cancer. Hormones regulate the proliferation of breast cancer cells through binding between estrogen or progestins and steroid receptors that may reside in the cytoplasm or be transcriptionally activated as steroid–protein nuclear receptor complexes. However, receptors for nonpeptide hormones also exist in the plasma membrane. Via those receptors, hormones are able to stimulate breast cancer cell proliferation when activated. Integrins are heterodimeric structural proteins of the plasma membrane. Their primary functions are to interact with extracellular matrix proteins and growth factors. Recently, integrin αvβ3 has been identified as a receptor for nonpeptide hormones, such as thyroid hormone and dihydrotestosterone (DHT). DHT promotes the proliferation of human breast cancer cells through binding to integrin αvβ3. A receptor for resveratrol, a polyphenol stilbene, also exists on this integrin in breast cancer cells, mediating the anti-proliferative, pro-apoptotic action of the compound in these cells. Unrelated activities of DHT and resveratrol that originate at integrin depend upon downstream stimulation of mitogen-activated protein kinase (MAPK, ERK1/2) activity, suggesting the existence of distinct, function-specific pools of ERK1/2 within the cell. This review will discuss the features of these receptors in breast cancer cells, in turn suggesting clinical applications that are based on the interactions of resveratrol/DHT with integrin αvβ3 and other androgen receptors.


Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1606-1617 ◽  
Author(s):  
Kyren A. Lazarus ◽  
Kristy A. Brown ◽  
Morag J. Young ◽  
Zhe Zhao ◽  
Rhiannon S. Coulson ◽  
...  

Liver receptor homolog-1 (LRH-1) is an orphan nuclear receptor that belongs to the NR5A subgroup of nuclear receptors. LRH-1 induces key genes to regulate metabolic process, ovarian function, cancer cell proliferation, and steroidogenesis. In the breast, LRH-1 modulates and synergizes with endogenous estrogen signaling to promote breast cancer cell proliferation. We used small interfering RNA knockdown strategies to deplete LRH-1 in breast cancer cells and followed with microarray analysis to identify LRH-1–dependent mechanisms. We identified key genes involved in TGF-β signaling to be highly responsive to LRH-1 knockdown. This relationship was validated in 2 breast cancer cell lines overexpressing LRH-1 in vitro and in a novel transgenic mouse with targeted LRH-1 overexpression in mammary epithelial cells. Notably, TGF-β signaling was activated in LRH-1–overexpressing breast cancer cells and mouse mammary glands. Further analyses of mammary gross morphology revealed a significant reduction in mammary lateral budding after LRH-1 overexpression. These findings suggest that the altered mammary morphogenesis in LRH-1 transgenic animals is mediated via enhanced TGF-β expression. The regulation of TGF-β isoforms and SMAD2/3-mediated downstream signaling by LRH-1 also implicates a potential contribution of LRH-1 in breast cancer. Collectively, these data demonstrate that LRH-1 regulates TGF-β expression and downstream signaling in mouse mammary glands.


2021 ◽  
Vol 11 (8) ◽  
pp. 1643-1648
Author(s):  
Zhiyu Liang ◽  
Chuan Li

GSK-3β is a tumor suppressor gene in multiple cancers by phosphorylated degrading β-catenin. Several studies showed association of miR-24 with breast cancer. Bioinformatics analysis showed a relationship of miR-24 with GSK-3β. Our study assessed miR-24’s role in GSK-3β/β-catenin siganling and breast cancer cell cisplatin resistance. MiR-24, GSK-3β, β-catenin, and Bcl-2 expressions in MDA-MB-231 and MDA-MB-231/DDP cells were detected along cell proliferation and apoptosis. DDP resistance cells were assigned into miR-NC, miR-24 inhibitor, pIRES-blank, pIRES-GSK-3β, and miR-24 inhibitor+pIRES-GSK-3β groups and cell proliferation was determined. MiR-24 inhibited GSK-3β level. GSK-3β and cell apoptosis significantly downregulated, while miR-24, β-catenin, Bcl-2, and cell proliferation significantly elevated in DDP resistance cells. MiR-24 inhibitor and/or pIRES-GSK-3β significantly increased GSK-3β level, declined β-catenin and Bcl-2 expressions, attenuated cell proliferation, enhanced cell apoptosis, and weakened cisplatin resistance. MiR-24 upregulation was related to breast cancer cell cisplatin resistance. Inhibition of miR-24 upregulated GSK-3β, restrained Wnt/β-catenin signaling and cisplatin resistance in breast cancer cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fengqin Shi ◽  
Ya Li ◽  
Rui Han ◽  
Alan Fu ◽  
Ronghua Wang ◽  
...  

AbstractValerian root (Valeriana officinalis) is a popular and widely available herbal supplement used to treat sleeping disorders and insomnia. The herb’s ability to ameliorate sleep dysfunction may signify an unexplored anti-tumorigenic effect due to the connection between circadian factors and tumorigenesis. Of particular interest are the structural similarities shared between valeric acid, valerian's active chemical ingredient, and certain histone deacteylase (HDAC) inhibitors, which imply that valerian may play a role in epigenetic gene regulation. In this study, we tested the hypothesis that the circadian-related herb valerian can inhibit breast cancer cell growth and explored epigenetic changes associated with valeric acid treatment. Our results showed that aqueous valerian extract reduced growth of breast cancer cells. In addition, treatment of valeric acid was associated with decreased breast cancer cell proliferation, migration, colony formation and 3D formation in vitro in a dose- and time-dependent manner, as well as reduced HDAC activity and a global DNA hypomethylation. Overall, these findings demonstrate that valeric acid can decrease the breast cancer cell proliferation possibly by mediating epigenetic modifications such as the inhibition of histone deacetylases and alterations of DNA methylation. This study highlights a potential utility of valeric acid as a novel HDAC inhibitor and a therapeutic agent in the treatment of breast cancer.


2021 ◽  
Vol 15 (6) ◽  
pp. 285-291
Author(s):  
Qinnuan Sun ◽  
Xiumei Wang

Abstract Background Breast cancer represents the second most deadly malignancy in women, and long noncoding RNAs (lncRNAs) have crucial functions in its development. Objective To investigate effects of the promoter of CDKN1A antisense DNA damage-activated RNA (PANDAR) on epithelial-mesenchymal transition (EMT) in breast cancer cells and their proliferation. Methods lncRNAs potentially regulating the transcriptional activity of the E-cadherin (E-cad, an epithelial cell marker) gene promoter were screened using a dual-luciferase reporter assay. PANDAR was overexpressed in Michigan cancer foundation 7 (MCF-7) breast cancer cells. E-cad and N-cadherin (N-cad, a mesenchymal cell marker) levels were detected by immunoblotting. Cell viability was assessed using a cell counting kit-8. Results PANDAR and TCONS00068220/LOC105375819 conservatively regulated the promoter activity of E-cad. PANDAR overexpression in MCF-7 inhibited E-cad expression, but upregulated N-cad. The enhanced expression of PANDAR promoted cell proliferation. Conclusion PANDAR is a key transcriptional repressor of E-cad and has regulatory effects on the promotion of cell proliferation. PANDAR is an oncogene in breast cancer, potentially facilitating the EMT process and promoting cell proliferation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dan Sun ◽  
Ying-Chun Li ◽  
Xiao-Yu Zhang

Ovarian and breast cancer are prevalent female malignancies with increasing occurrence incidence and metastasis, significantly affecting the health and life quality of women globally. Anesthetic lidocaine has presented anti-tumor activities in the experimental conditions. However, the effect of lidocaine on ovarian and breast cancer remains elusive. We identified the important function of lidocaine in enhancing ferroptosis and repressing progression of ovarian and breast cancer. Our data showed that lidocaine further repressed erastin-inhibited ovarian and breast cancer cell viabilities. The treatment of lidocaine induced accumulation of Fe2+, iron and lipid reactive oxygen species (ROS) in ovarian and breast cancer cells. The ovarian and breast cancer cell proliferation was suppressed while cell apoptosis was induced by lidocaine in vitro. Lidocaine attenuated invasion and migration of ovarian and breast cancer cells as well. Regarding the mechanism, we found that lidocaine downregulated solute carrier family 7 member 11 (SLC7A11) expression by enhancing microRNA-382-5p (miR-382-5p) in the cells. The inhibition of miR-382-5p blocked lidocaine-induced ferroptosis of ovarian and breast cancer cells. MiR-382-5p/SLC7A11 axis was involved in lidocaine-mediated inhibition of ovarian and breast cancer cell proliferation in vitro. The miR-382-5p expression was down-regulated but SLC7A11 expression was up-regulated in clinical ovarian and breast cancer samples. Furthermore, the treatment of lidocaine repressed tumor growth of ovarian cancer cells in vivo, in which the miR-382-5p expression was increased while SLC7A11 expression was decreased. Consequently, we concluded that the lidocaine promoted ferroptosis by miR-382-5p/SLC7A11 axis in ovarian and breast cancer cells. The clinical value of lidocaine in the treatment of ovarian and breast cancer deserves to be proved in detail.


Sign in / Sign up

Export Citation Format

Share Document