scholarly journals Cheap, Versatile, and Turnkey Fabrication of Microfluidic Master Molds Using Consumer Grade LCD Stereolithography 3D Printing

Author(s):  
Vincent G. Colin ◽  
Théo A. Travers ◽  
Denis Gindre ◽  
Régis Barillé ◽  
Matthieu Loumaigne

Abstract The recent development of 3D printers allowed a lot of limitations in the field of microfabrication to be circumvented. The ever-growing chase for smaller dimensions has come to an end in domains such as microfluidics, and the focus now shifted to a cost-efficiency challenge. In this paper, the use of a high-resolution stereolithography LCD 3D printer is investigated for fast and cheap production of microfluidic master molds. More precisely, we use the UV LED array and the LCD matrix of the printer as an illuminator and a programmable photomask for soft lithography. The achieved resolution of around 100µm is mainly limited by the pixel geometry of the LCD matrix. A tree-shape gradient mixer was fabricated using the presented method. It shows very good performances despite the presence of sidewall ripples due to the uneven pixel geometry of the LCD matrix. Given its sub-€1,000 cost, this method is a very good entry point for labs wishing to explore the potential of microfluidic devices in their experiments, as well as a teaching tool for introducing students to microfluidics.

2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Mohamed Mohamed ◽  
Hitendra Kumar ◽  
Zongjie Wang ◽  
Nicholas Martin ◽  
Barry Mills ◽  
...  

With the dramatic increment of complexity, more microfluidic devices require 3D structures, such as multi-depth and -layer channels. The traditional multi-step photolithography is time-consuming and labor-intensive and also requires precise alignment during the fabrication of microfluidic devices. Here, we present an inexpensive, single-step, and rapid fabrication method for multi-depth microfluidic devices using a high-resolution liquid crystal display (LCD) stereolithographic (SLA) three-dimensional (3D) printing system. With the pixel size down to 47.25 μm, the feature resolutions in the horizontal and vertical directions are 150 μm and 50 μm, respectively. The multi-depth molds were successfully printed at the same time and the multi-depth features were transferred properly to the polydimethylsiloxane (PDMS) having multi-depth channels via soft lithography. A flow-focusing droplet generator with a multi-depth channel was fabricated using the presented 3D printing method. Experimental results show that the multi-depth channel could manipulate the morphology and size of droplets, which is desired for many engineering applications. Taken together, LCD SLA 3D printing is an excellent alternative method to the multi-step photolithography for the fabrication of multi-depth microfluidic devices. Taking the advantages of its controllability, cost-effectiveness, and acceptable resolution, LCD SLA 3D printing can have a great potential to fabricate 3D microfluidic devices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jose L. Sanchez Noriega ◽  
Nicholas A. Chartrand ◽  
Jonard Corpuz Valdoz ◽  
Collin G. Cribbs ◽  
Dallin A. Jacobs ◽  
...  

AbstractTraditional 3D printing based on Digital Light Processing Stereolithography (DLP-SL) is unnecessarily limiting as applied to microfluidic device fabrication, especially for high-resolution features. This limitation is due primarily to inherent tradeoffs between layer thickness, exposure time, material strength, and optical penetration that can be impossible to satisfy for microfluidic features. We introduce a generalized 3D printing process that significantly expands the accessible spatially distributed optical dose parameter space to enable the fabrication of much higher resolution 3D components without increasing the resolution of the 3D printer. Here we demonstrate component miniaturization in conjunction with a high degree of integration, including 15 μm × 15 μm valves and a 2.2 mm × 1.1 mm 10-stage 2-fold serial diluter. These results illustrate our approach’s promise to enable highly functional and compact microfluidic devices for a wide variety of biomolecular applications.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2545
Author(s):  
Marcin Hoffmann ◽  
Krzysztof Żarkiewicz ◽  
Adam Zieliński ◽  
Szymon Skibicki ◽  
Łukasz Marchewka

Foundation piles that are made by concrete 3D printers constitute a new alternative way of founding buildings constructed using incremental technology. We are currently observing very rapid development of incremental technology for the construction industry. The systems that are used for 3D printing with the application of construction materials make it possible to form permanent formwork for strip foundations, construct load-bearing walls and partition walls, and prefabricate elements, such as stairs, lintels, and ceilings. 3D printing systems do not offer soil reinforcement by making piles. The paper presents the possibility of making concrete foundation piles in laboratory conditions using a concrete 3D printer. The paper shows the tools and procedure for pile pumping. An experiment for measuring pile bearing capacity is described and an example of a pile deployment model under a foundation is described. The results of the tests and analytical calculations have shown that the displacement piles demonstrate less settlement when compared to the analysed shallow foundation. The authors indicate that it is possible to replace the shallow foundation with a series of piles combined with a printed wall without locally widening it. This type of foundation can be used for the foundation of low-rise buildings, such as detached houses. Estimated calculations have shown that the possibility of making foundation piles by a 3D printer will reduce the cost of making foundations by shortening the time of execution of works and reducing the consumption of construction materials.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Reverson Fernandes Quero ◽  
Gessica Domingos Silveira ◽  
Jose Alberto Fracassi da Silva ◽  
Dosil Pereira de Jesus

The fabrication of microfluidic devices through Fused Deposition Modeling (FDM) 3D printing has faced several challenges, mainly regarding obtaining microchannels with suitable transparency and sizes. Thus, the use of this...


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 523 ◽  
Author(s):  
Wei Goh ◽  
Michinao Hashimoto

Fused deposition modeling (FDM) has become an indispensable tool for 3D printing of molds used for sacrificial molding to fabricate microfluidic devices. The freedom of design of a mold is, however, restricted to the capabilities of the 3D printer and associated materials. Although FDM has been used to create a sacrificial mold made with polyvinyl alcohol (PVA) to produce 3D microchannels, microchannels with free-hanging geometries are still difficult to achieve. Herein, dual sacrificial molding was devised to fabricate microchannels with overhang or helical features in PDMS using two complementary materials. The method uses an FDM 3D printer equipped with two extruders and filaments made of high- impact polystyrene (HIPS) and PVA. HIPS was initially removed in limonene to reveal the PVA mold harboring the design of microchannels. The PVA mold was embedded in PDMS and subsequently removed in water to create microchannels with 3D geometries such as dual helices and multilayer pyramidal networks. The complementary pairing of the HIPS and PVA filaments during printing facilitated the support of suspended features of the PVA mold. The PVA mold was robust and retained the original design after the exposure to limonene. The resilience of the technique demonstrated here allows us to create microchannels with geometries not attainable with sacrificial molding with a mold printed with a single material.


Author(s):  
Verma Walker, MLIS

Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.


Author(s):  
Daniel A. Tillman ◽  
Ross C. Teller ◽  
Paul E. Perez ◽  
Song A. An

This chapter examines the theories, strategies, and techniques for employing 3D printing technologies to fabricate education-appropriate augmented reality (AR) headsets and provides a concrete example of an AR headset that the authors developed. The chapter begins by discussing theories and historically relevant events that provide a context for the chapter's narrative about use of 3D printers to support AR in education. Next, the chapter presents the strategies that were employed while developing and 3D fabricating a custom-designed AR headset that was intended for supporting middle school students learning science and mathematics content knowledge. Afterward, the chapter provides directions and resources for the reader describing how to build the presented AR headset design themselves by using a 3D printer and affordable electronic components, as well as information about how to join the Maker community and participate in the designing and producing of similar projects. Lastly, the chapter delivers a summarization of all findings discussed.


Author(s):  
Vladimir Kuznetsov ◽  
Alexey Solonin ◽  
Oleg Urzhumtcev ◽  
Azamat Tavitov ◽  
Richard Schilling

The current paper is studying the influence of geometrical parameters of the FDM (FFF) 3D printing process on printed part strength for open source desktop 3D printers and the most popular material used for that purpose, i.e. PLA (polylactic acid). The study was conducted using a set of different nozzles (0.4, 0.6 and 0.8 mm) and a range of layer heights from the minimum to maximum physical limits of the machine. To assess print strength, a novel assessment method is proposed. A tubular sample is loaded in the weakest direction (across layers) in a three-point bending fixture. To explain the results obtained, a mesostructure evaluation through SEM scans of the samples were used. A significant influence of geometric process parameters was detected on sample mesostructure and, consequently, on sample strength.


2016 ◽  
Vol 8 (3) ◽  
pp. 496-503 ◽  
Author(s):  
Lucas Costa Duarte ◽  
Thays Colletes de Carvalho ◽  
Eulício Oliveira Lobo-Júnior ◽  
Patrícia V. Abdelnur ◽  
Boniek G. Vaz ◽  
...  

We describe the use of a RepRap 3D printer to fabricate microfluidic devices for direct spray ionization mass spectrometry assisted by paper tips.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 567 ◽  
Author(s):  
Carlos Ruiz ◽  
Karteek Kadimisetty ◽  
Kun Yin ◽  
Michael G. Mauk ◽  
Hui Zhao ◽  
...  

Widely accessible, inexpensive, easy-to-use consumer 3D printers, such as desktop stereolithography (SLA) and fused-deposition modeling (FDM) systems are increasingly employed in prototyping and customizing miniaturized fluidic systems for diagnostics and research. However, these 3D printers are generally limited to printing parts made of only one material type, which limits the functionality of the microfluidic devices without additional assembly and bonding steps. Moreover, mating of different materials requires good sealing in such microfluidic devices. Here, we report methods to print hybrid structures comprising a hard, rigid component (clear polymethacrylate polymer) printed by a low-cost SLA printer, and where the first printed part is accurately mated and adhered to a second, soft, flexible component (thermoplastic polyurethane elastomer) printed by an FDM printer. The prescribed mounting and alignment of the first-printed SLA-printed hard component, and its pre-treatment and heating during the second FDM step, can produce leak-free bonds at material interfaces. To demonstrate the utility of such hybrid 3D-printing, we prototype and test three components: i) finger-actuated pump, ii) quick-connect fluid coupler, and iii) nucleic acid amplification test device with screw-type twist sealing for sample introduction.


Sign in / Sign up

Export Citation Format

Share Document