scholarly journals GhD14 Regulates Plant Architecture and Fiber Development in Cotton

Author(s):  
Liping Zhu ◽  
Lingling Dou ◽  
Zailong Tian ◽  
Huizhi Zhang ◽  
Li Zhang ◽  
...  

Abstract Background: Strigolactone (SL) signaling is essential in regulating plant development. DWARF14 (D14), the SL receptor, interacts with the F-box in MORE AXILLARY GROWTH (MAX2) to modulate SL signaling. However, the biological function of D14 protein is still unknown in cotton.Results: Here, we identified GhD14s in Gossypium hirsutum and resolved its function in cotton plant architecture and fiber development. Subcellular location results revealed that the GhD14D protein was localized to both the cytoplasm and nucleus. GUS staining assay showed that GhD14D was mainly expressed in leaf primordium, inflorescence, axillary bud and stem and expression analysis revealed that GhD14A/D was highly expressed in stem, flower and fiber cells at 20 days post-anthesis (DPA). Silencing GhD14A/D gene expression in upland cotton significantly increased branch angle. Meanwhile, the fiber length and the transcripts of secondary cell wall biosynthesis related genes were also reduced after GhD14A/D gene silencing. In addition, overexpression of GhD14D in Atd14 mutant successfully rescued the phenotype of the d14 mutant with much shoot-branching and short plant height.Conclusions: Our findings suggest that the GhD14 gene contributes to shoot branch development and fiber cell development in cotton. This study deepens our understanding of the biological role of SL signaling in cotton and providing guidance for modifying cotton plant architecture and improving fiber development using genetic engineering to help us breed better cotton varieties in the future.

2021 ◽  
Author(s):  
Liping Zhu ◽  
Lingling Dou ◽  
Huizhi Zhang ◽  
Li Zhang ◽  
Cuixia Liu ◽  
...  

Abstract Strigolactone (SL) signaling is essential in regulating plant development. DWARF14 (D14), the SL receptor, interacts with the F-box in MORE AXILLARY GROWTH (MAX2) to modulate SL signaling. However, the biological function of D14 protein is still unknown in cotton. Here, we identified GhD14s in Gossypium hirsutum and resolved its function in cotton plant architecture and fiber development. The GhD14D protein was localized to both the cytoplasm and nucleus. GUS staining assay showed that GhD14D was mainly expressed in leaf primordium, inflorescence, axillary bud and stem and expression analysis revealed that GhD14A/D was highly expressed in stem, flower and fiber cells at 20 days post-anthesis (DPA). Silencing GhD14A/D gene expression in upland cotton significantly increased branch angle and reduced fiber length as well as the transcripts of secondary cell wall biosynthesis related genes. In addition, overexpression of GhD14D in Atd14 mutant successfully rescued the phenotype of the d14-1 mutant with much shoot-branching and short plant height. Our findings suggest that the GhD14 gene contributes to shoot branch development and fiber cell development in cotton. This study deepens our understanding of the biological role of SL signaling in cotton and providing guidance for modifying cotton plant architecture and improving fiber development using genetic engineering to help us breed better cotton varieties in the future.


2004 ◽  
Vol 31 (6) ◽  
pp. 563 ◽  
Author(s):  
A. Harvey Millar

Knowledge of cellular compartmentation is critical to an understanding of many aspects of biological function in plant cells but it remains an under-emphasised concept in the use of and investment in plant functional genomic tools. The emerging effort in plant subcellular proteomics is discussed, and the current datasets that are available for a series of organelles and cellular membranes isolated from a range of plant species are noted. The benefit of knowing subcellular location in determining the role of proteins of unknown function is considered alongside the challenges faced in this endeavour. These include clear problems in dealing with contamination during the isolation of subcellular compartments, the meaningful integration of these datasets once completed to assemble a jigsaw of the cellular proteome as a whole, and the use of the wider literature in supplementing this proteomic discovery effort.


2018 ◽  
Vol 18 (3) ◽  
pp. 199-213
Author(s):  
Guangying Qi ◽  
Jing Liu ◽  
Sisi Mi ◽  
Takaaki Tsunematsu ◽  
Shengjian Jin ◽  
...  

Aurora kinases are a group of serine/threonine kinases responsible for the regulation of mitosis. In recent years, with the increase in Aurora kinase-related research, the important role of Aurora kinases in tumorigenesis has been gradually recognized. Aurora kinases have been regarded as a new target for cancer therapy, resulting in the development of Aurora kinase inhibitors. The study and application of these small-molecule inhibitors, especially in combination with chemotherapy drugs, represent a new direction in cancer treatment. This paper reviews studies on Aurora kinases from recent years, including studies of their biological function, their relationship with tumor progression, and their inhibitors.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanpeng Ding ◽  
Nuomin Liu ◽  
Mengge Chen ◽  
Yulian Xu ◽  
Sha Fang ◽  
...  

Abstract Background BLCA is a common cancer worldwide, and it is both aggressive and fatal. Immunotherapy (ICT) has achieved an excellent curative effect in BLCA; however, only some BLCA patients can benefit from ICT. MT1L is a pseudogene, and a previous study suggested that MT1L can be used as an indicator of prognosis in colorectal cancer. However, the role of MT1L in BLCA has not yet been determined. Methods Data were collected from TCGA, and logistic regression, Kaplan-Meier plotter, and multivariate Cox analysis were performed to demonstrate the correlation between the pseudogene MT1L and the prognosis of BLCA. To identify the association of MT1L with tumor-infiltrating immune cells, TIMER and TISIDB were utilized. Additionally, GSEA was performed to elucidate the potential biological function. Results The expression of MT1L was decreased in BLCA. Additionally, MT1L was positively correlated with immune cells, such as Tregs (ρ = 0.708) and MDSCs (ρ = 0.664). We also confirmed that MT1L is related to typical markers of immune cells, such as PD-1 and CTLA-4. In addition, a high MT1L expression level was associated with the advanced T and N and high grade in BLCA. Increased expression of MT1L was significantly associated with shorter OS times of BLCA patients (p < 0.05). Multivariate Cox analysis revealed that MT1L expression could be an independent prognostic factor in BLCA. Conclusion Collectively, our findings demonstrated that the pseudogene MT1L regulates the immune microenvironment, correlates with poor survival, and is an independent prognostic biomarker in BLCA.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 763-774 ◽  
Author(s):  
Willis Li ◽  
Elizabeth Noll ◽  
Norbert Perrimon

Abstract Raf is an essential downstream effector of activated p21Ras (Ras) in transducing proliferation or differentiation signals. Following binding to Ras, Raf is translocated to the plasma membrane, where it is activated by a yet unidentified “Raf activator.” In an attempt to identify the Raf activator or additional molecules involved in the Raf signaling pathway, we conducted a genetic screen to identify genomic regions that are required for the biological function of Drosophila Raf (Draf). We tested a collection of chromosomal deficiencies representing ∼70% of the autosomal euchromatic genomic regions for their abilities to enhance the lethality associated with a hypomorphic viable allele of Draf, DrafSu2. Of the 148 autosomal deficiencies tested, 23 behaved as dominant enhancers of Draf  Su2, causing lethality in Draf  Su2 hemizygous males. Four of these deficiencies identified genes known to be involved in the Drosophila Ras/Raf (Ras1/Draf) pathway: Ras1, rolled (rl, encoding a MAPK), 14-3-3ϵ, and bowel (bowl). Two additional deficiencies removed the Drosophila Tec and Src homologs, Tec29A and Src64B. We demonstrate that Src64B interacts genetically with Draf and that an activated form of Src64B, when overexpressed in early embryos, causes ectopic expression of the Torso (Tor) receptor tyrosine kinase-target gene tailless. In addition, we show that a mutation in Tec29A partially suppresses a gain-of-function mutation in tor. These results suggest that Tec29A and Src64B are involved in Tor signaling, raising the possibility that they function to activate Draf. Finally, we discovered a genetic interaction between Draf  Su2 and Df(3L)vin5 that revealed a novel role of Draf in limb development. We find that loss of Draf activity causes limb defects, including pattern duplications, consistent with a role for Draf in regulation of engrailed (en) expression in imaginal discs.


2018 ◽  
Vol 7 (2) ◽  
pp. 168-180 ◽  
Author(s):  
Gabriele Alves de Paula Chemin ◽  
Suzelaine Taize Stadler ◽  
Elaine Cristina de Oliveira ◽  
César Rey Xavier ◽  
Cristina Ide Fujinaga

O artigo faz uma análise crítica documental do material impresso utilizado pelas líderes da Pastoral da Criança, sobre o aleitamento materno. A natureza do estudo é qualitativa, utilizando o método de análise de conteúdo do tipo temática e estrutural, a partir da análise documental. O material analisado reforça o conhecimento científico e a função biológica do aleitamento materno, homogeneizando as ações e descontextualizando a ação local e comunitária. A organização da Pastoral em grupos pequenos favorece o trabalho de apoio ao aleitamento materno, porém há muito que considerar sobre o papel singular de cada líder além do que está posto nos materiais padronizados pela instituição.Palavras-chave: Aleitamento materno. Organização comunitária. Políticas públicas. BREASTFEEDING AND PASTORAL OF THE CHILD: A DOCUMENTAL ANALYSIS ABSTRACT: The article makes a documentary critical analysis of printed material used by leaders of the Pastoral on breastfeeding. The nature of the study is qualitative, using the method of analysis of content of thematic and structural type, from the documentary analysis. The analyzed material reinforces the scientific knowledge and the biological function of breastfeeding, homogenizing actions and decontextualizing local and community action. The Pastoral organization in small groups favors the work in support of breastfeeding, but there is much to consider about the unique role of each leader beyond what is laid on standardized materials by the institution.Keywords: Breast feeding. Communitarian organization. Public policies.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fang Hou ◽  
Jie Li ◽  
Jie Peng ◽  
Zhenghua Teng ◽  
Jun Feng ◽  
...  

Abstract Background TMPO-AS1 is a recently characterized oncogenic lncRNA in ovarian cancer. Its role in other ovary diseases is unknown. This study explored its role in polycystic ovary syndrome (PCOS). Methods Follicular fluid was extracted from both PCOS patients and controls. The levels of TMPO-AS1 and mature and premature miR-335-5p were analyzed by RT-qPCR. The role of TMPO-AS1 in regulating miR-355-5p maturation in granulosa-like tumor (KGN) cells was analyzed by overexpression experiments. The interaction between TMPO-AS1 and premature miR-335-5p was analyzed by RNA pull-down assay. The subcellular location of TMPO-AS1 in KGN cells was analyzed by nuclear fractionation assay. The role of TMPO-AS1 and miR-335-5p in KGN cell proliferation was analyzed by BrdU assay. Results TMPO-AS1 was increased in PCOS, while mature miR-355-5p was decreased in PCOS. TMPO-AS1 overexpression decreased mature miR-355-5p level but increased premature miR-355-5p. TMPO-AS1 was localized in both nucleus and cytoplasm. TMPO-AS1 directly interacted with premature miR-355-5p in KGN cells. TMPO-AS1 increased KGN cell proliferation while miR-355-5p decreased cell proliferation. The co-transfection assay showed that TMPO-AS1 reduced the suppressive effects of miR-355-5p on cell proliferation. Conclusions TMPO-AS1 might suppress miR-335-5p maturation to participate in PCOS.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 155-161
Author(s):  
Frank H. Ruddle ◽  
Kevin L. Bentley ◽  
Michael T. Murtha ◽  
Neil Risch

Homeobox cluster genes (Hox genes) are highly conserved and can be usefully employed to study phyletic relationships and the process of evolution itself. A phylogenetic survey of Hox genes shows an increase in gene number in some more recently evolved forms, particularly in vertebrates. The gene increase has occurred through a two-step process involving first, gene expansion to form a cluster, and second, cluster duplication to form multiple clusters. We also describe data that suggests that non-Hox genes may be preferrentially associated with the Hox clusters and raise the possibility that this association may have an adaptive biological function. Hox gene loss may also play a role in evolution. Hox gene loss is well substantiated in the vertebrates, and we identify additional possible instances of gene loss in the echinoderms and urochordates based on PCR surveys. We point out the possible adaptive role of gene loss in evolution, and urge the extension of gene mapping studies to relevant species as a means of its substantiation.


Sign in / Sign up

Export Citation Format

Share Document