Preparation and Characterization of New Modified System: Polyaniline/1.5-Naphtalene Disulfonic Acid as Novel Photocatalyst in the H2 Production

Author(s):  
F. Z. Hamlaoui ◽  
N. Naar ◽  
Faouzi Saib ◽  
M. Trari

Abstract The semiconducting properties of the system Polyaniline / 1.5-naphtalene disulfonic acid are investigated for the first time to assess its photocatalytic performance for the hydrogen evolution under visible light irradiation. PANI is thermally stable up to ~ 300 °C, above which a weight loss of ~ 1.2% occurs. The X-ray diffraction pattern shows broad peaks with a particle size of ~ 7 nm, leading to an active surface area of ∼ 400 m2 g−1. A direct optical transition at 1.96 eV, is determined from the diffuse reflectance spectrum. The electrical conductivity of PANI-NDSA follows an exponential law with activation energy of 0.24 eV. The p-type conduction of PANI-NDSA is evidenced from the (capacitance-2 – potential) characteristic plot; a flat band potential (Efb) of 0.82 VSCE and a holes density (NA) of 8.43× 1024 m-3 are determined in neutral solution (Na2SO4 0.1 M). The electrochemical impedance spectroscopy, measured over an extended frequency domain (1 mHz - 1010 Hz), indicates the contribution of both the bulk and grain boundaries with a constant phase element (CPE). As application, PANI-NDSA is successfully tested for the hydrogen production upon visible light owing to the potential of its conduction band (-0.75 VSCE), less cathodic than that of H2O/H2 (~ -0.30 VSCE). H2 liberation rate of 3840 h-1 (g catalyst)-1 and a quantum efficiency of 0.34% under full light (29 mW cm-2) are obtained using Fe(CN)64- as reducing agent. The photoactivity is completely restored during the second cycle.

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1172
Author(s):  
Magdalena Popczyk ◽  
Julian Kubisztal ◽  
Andrzej Szymon Swinarew ◽  
Zbigniew Waśkiewicz ◽  
Arkadiusz Stanula ◽  
...  

The paper presents research on evaluation of corrosion resistance of Ni-W alloy coatings subjected to heat treatment. The corrosion resistance was tested in 5% NaCl solution by the use of potentiodynamic polarization technique and electrochemical impedance spectroscopy. Characteristics of the Ni-W coatings after heat treatment were carried out using scanning electron microscopy, scanning Kelvin probe technique and X-ray diffraction. Suggested reasons for the improvement of properties of the heat treated Ni-W coating, obtained at the lowest current density value (125 mA∙cm−2), are the highest tungsten content (c.a. 25 at.%) as well as the smallest and the most homogeneous electrochemically active surface area.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2244
Author(s):  
Ahmed Elsheikh ◽  
James McGregor

The direct use of ethanol in fuel cells presents unprecedented economic, technical, and environmental opportunities in energy conversion. However, complex challenges need to be resolved. For instance, ethanol oxidation reaction (EOR) requires breaking the rigid C–C bond and results in the generation of poisoning carbonaceous species. Therefore, new designs of the catalyst electrode are necessary. In this work, two trimetallic PdxAgyNiz/C samples are prepared using a facile borohydride reduction route. The catalysts are characterized by X-ray diffraction (XRD), Energy-Dispersive X-ray spectroscopy (EDX), X-ray photoelectron Spectroscopy (XPS), and Transmission Electron Microscopy (TEM) and evaluated for EOR through cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The XRD patterns have shown a weak alloying potential between Pd, and Ag prepared through co-reduction technique. The catalysts prepared have generally shown enhanced performance compared to previously reported ones, suggesting that the applied synthesis may be suitable for catalyst mass production. Moreover, the addition of Ag and Ni has improved the Pd physiochemical properties and electrocatalytic performance towards EOR in addition to reducing cell fabrication costs. In addition to containing less Pd, The PdAgNi/C is the higher performing of the two trimetallic samples presenting a 2.7 A/mgPd oxidation current peak. The Pd4Ag2Ni1/C is higher performing in terms of its steady-state current density and electrochemical active surface area.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Dengrong Cai ◽  
Jianmin Li ◽  
Shundong Bu ◽  
Shengwen Yu ◽  
Dengren Jin ◽  
...  

ABSTRACTA facile hydrothermal route assisted by polyethylene glycol (PEG) 400 was utilized to synthesize single-phase Bi2Fe4O9 crystallites. X-ray diffraction results showed the products with PEG 400 of 30 g/L exhibited a preferred growth along the (001) plane. Transmission electron microscopy indicated that the morphology of the as-prepared Bi2Fe4O9 crystallites with PEG 400 were plake-like and rod-like. Strong absorption in visible-light region of the products was characterized by UV-vis diffuse reflectance spectrum (UV-DRS). The photocatalytic activity of Bi2Fe4O9 crystallites was evaluated on degradation of methyl orange (MO) under visible light irradiation. For 3 h irradiation, the degradation ratio was increased to 93% with the aid of a small amount of H2O2. The analysis of FT-IR spectra proved that the Bi2Fe4O9 catalysts were remained stable after the photocalytic reactions.


NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650114 ◽  
Author(s):  
Dan Li ◽  
Jianwei Li ◽  
Caiqin Han ◽  
Xinsheng Zhao ◽  
Haipeng Chu ◽  
...  

Few-layered MoS2 nanostructures were successfully synthesized by a simple hydrothermal method without the addition of any catalysts or surfactants. Their morphology, structure and photocatalytic activity were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electrochemical impedance spectra and UV-Vis absorption spectroscopy, respectively. These results show that the MoS2 nanostructures synthesized at 180[Formula: see text]C exhibit an optimal visible light photocatalytic activity (99%) in the degradation of Rhodamine B owing to the relatively easier adsorption of pollutants, higher visible light absorption and lower electron–hole pair recombination.


NANO ◽  
2020 ◽  
Vol 15 (07) ◽  
pp. 2050089
Author(s):  
Litong Niu ◽  
Shaoping Hu ◽  
Yali Ma ◽  
Mingming Wang ◽  
Bolin Lv ◽  
...  

Novel ZnIn2S4/FeUiO-66 (ZFeU) photocatalyst with different proportion of FeUiO-66 has been successfully prepared by a facile one-pot solvothermal reaction. The as-synthesized nanocomposites have been thoroughly characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Brunauer–Emmett–Teller (BET) characterization, photoluminescence (PL) analysis and electrochemical impedance spectrum (EIS). The photocatalytic performance of ZFeU nanocomposites for the photodegradation of RhB under visible light irradiation was better than that of ZnIn2S4 and FeUiO-66 alone. The experiment results showed the 20% ZFeU nanocomposites had the best photocatalytic properties. At the same time, a probable mechanism was discussed and it was believed that introduction of FeUiO-66 on ZnIn2S4 would minimize the recombination of photogenerated electron-hole pairs, leading to the enhancement of the photocatalytic activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
M. Khadiri ◽  
M. Elyaagoubi ◽  
R. Idouhli ◽  
Y. Koumya ◽  
O. Zakir ◽  
...  

The anodization of the Ti-Cu (2%) alloy was carried out in a 5M H3PO4 solution for 2 minutes. The obtained layers are characterized by XPS, X-ray diffraction, and Raman spectroscopy. The results showed that the obtained films are composed of poorly crystallized TiO2 oxide. Electrochemical Impedance spectroscopy studies revealed that the thickness of the formed film increases with increasing anodization potential. Additionally, the resistance of charge transfer becomes higher when the anodization potential increases. Thus, the Mott Schottky model revealed that the formed film is an n-type semiconductor. The density of charge carriers is in good agreement with those found in the literature. Also, it is found that the flat-band potential increases with increasing treatment potential.


2011 ◽  
Vol 399-401 ◽  
pp. 1926-1931 ◽  
Author(s):  
Yi Wang ◽  
Gang Chen ◽  
Wei Dong Liu ◽  
Qiong Yu Zhou ◽  
Qing Dong Zhong

Fe + Si coatings were prepared by iron deposition from a bath containing a suspension of silicon powders. These coatings were obtained at galvanostatic conditions, at the current density of jdep=−0.020 A cm−2 and at the temperature of 338 K. For determination of the influence of phase composition and surface morphology of these coatings on changes in the corrosion resistance, these coatings were modified in an argon atmosphere by thermal treatment at 873 K for 2h. A scanning electron microscope was used for surface morphology characterization of the coatings. The chemical composition of the coatings was determined by EDS and phase composition investigations were conducted by X-ray diffraction. It was found that the as-deposited coatings consist of a two-phase structure, i.e., iron and silicon. The phase composition for the Fe + Si coatings after thermal treatment is markedly different. The main peaks corresponding to Fe and Si coexist with the new phases: FeSi. Electrochemical corrosion resistance investigations were carried out in 3.5wt% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the basis of these investigations it was found that the Fe + Si coatings after thermal treatment are more corrosion resistant in 3.5wt% NaCl solution than the as-deposited coatings. The reasons for this are a reduction in the amount of free iron and silicon, the presence of new phases (in particular silicides), and a decrease of the active surface area of the coatings after thermal treatment.


2013 ◽  
Vol 860-863 ◽  
pp. 907-910
Author(s):  
Xiao Xia Lin ◽  
Jia Liu ◽  
De Gang Fu

B-doped TiO2nanotube arrays (B-TNTs) were synthesized by anodization method combined with dip-calcination technique. The physicochemical properties and surface morphology were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and UV-Vis diffuse reflectance spectrum (DRS). Methyl blue (MB) solution was utilized as the degradation model to evaluate the photocatalytic activity of B-TNTs under visible light irradiation. The results show B-TNTs shifts the absorption edge of TiO2nanotube arrays to the visible light region and B-TNTs displays higher photocatalytic activity compared with undoped TNTs.


2010 ◽  
Vol 113-116 ◽  
pp. 1810-1813
Author(s):  
Fang Xiao ◽  
You Long Xu

MnO2 films were electrodeposited on the Ti substrates by galvanostatic method in various plating solutions, which was MnCl2, Mn(NO3)2, MnSO4 and Mn(CH3COO)2 solutions, respectively. On X-ray diffraction test, Crystal structures of all MnO2 films were associated to α-MnO2 of tetragonal crystal system. Scanning electron microscopy results show that morphologies of MnO2 films were clearly different. Among them, MnO2 film prepared in Mn(CH3COO)2 solution presented a lot of cracks and holes. According to electrochemical impedance spectrum analysis, this MnO2 film presents the lowest charge-transfer resistance. Additionally, electrochemical active surface areas of MnO2 films were calculated on the basis of equivalent circuit model for impedance data. The result was found that MnO2 film prepared in Mn(CH3COO)2 solution showed the biggest electrochemical active surface area, which was about 382 cm2. Cyclic voltammograms were carried out for all the samples. MnO2 film formed in Mn(CH3COO)2 solution showed the highest special capacitance of 230 F g-1. The results suggest that Mn(CH3COO)2 solution is suitable for electrodepositing MnO2 film using supercapacitor electrode materials.


Sign in / Sign up

Export Citation Format

Share Document