Supplemental Choline Modulates Growth Performance and Gut Inflammation by Altering the Gut Microbiota and Lipid Metabolism in Weaned Piglets

2020 ◽  
Vol 151 (1) ◽  
pp. 20-29
Author(s):  
Yueqin Qiu ◽  
Shilong Liu ◽  
Lei Hou ◽  
Kebiao Li ◽  
Li Wang ◽  
...  

ABSTRACT Background Whether dietary choline and bile acids affect lipid use via gut microbiota is unclear. Objectives This study aimed to investigate the effect of choline and bile acids on growth performance, lipid use, intestinal immunology, gut microbiota, and bacterial metabolites in weaned piglets. Methods A total of 128 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 8.21 ± 0.20 kg body weight (BW)] were randomly allocated to 4 treatments (8 replicate pens per treatment, each pen containing 2 males and 2 females; n = 32 per treatment) for 28 d. Piglets were fed a control diet (CON) or the CON diet supplemented with 597 mg choline/kg (C), 500 mg bile acids/kg (BA) or both (C + BA) in a 2 × 2 factorial design. Growth performance, intestinal function, gut microbiota, and metabolites were determined. Results Compared with diets without choline, choline supplementation increased BW gain (6.13%), average daily gain (9.45%), gain per feed (8.18%), jejunal lipase activity (60.2%), and duodenal IL10 gene expression (51%), and decreased the mRNA abundance of duodenal TNFA (TNFα) (40.7%) and jejunal toll-like receptor 4 (32.9%) (P < 0.05); additionally, choline increased colonic butyrate (29.1%) and the abundance of Lactobacillus (42.3%), while decreasing the bile acid profile (55.8% to 57.6%) and the abundance of Parabacteroides (75.8%), Bacteroides (80.7%), and unidentified-Ruminococcaceae (32.5%) (P ≤ 0.05). Compared with diets without BA, BA supplementation decreased the mRNA abundance of colonic TNFA (37.4%), NF-κB p65 (42.4%), and myeloid differentiation factor 88 (42.5%) (P ≤ 0.01); BA also increased colonic butyrate (20.9%) and the abundance of Lactobacillus (39.7%) and Faecalibacterium (71.6%) and decreased that of Parabacteroides (67.7%) (P < 0.05). Conclusions Choline supplementation improved growth performance and prevented gut inflammation in weaned piglets by altering gut microbiota and lipid metabolism. BA supplementation suppressed intestinal inflammation with no effect on growth performance, which was associated with changed gut microbiota and metabolites.

2020 ◽  
Author(s):  
Yueqin Qiu ◽  
Kebiao Li ◽  
Shilong Liu ◽  
Li Wang ◽  
Kaiguo Gao ◽  
...  

Abstract Background: Choline or bile acids has many beneficial roles in physiological function. However, little was known about growth performance, intestinal mucosal function and microbiota-host interactions of weaned piglets in response to choline or bile acids supplementation. This study aimed to investigate the effect of choline and bile acids mixtures (ChB) supplementation on growth performance, intestinal mucosal barrier function, gut microbiota and bacterial metabolites of weaned piglets. One hundred and twenty-eight crossbred (Duroc × Landrace × Large White) weaned piglets (initial body weight: approximately 8 kg; 21 d of age) were randomly allocated to four different dietary treatments(a control diet (Control) and the other three groups were control diet supplemented with 800 mg/kg choline chloride (choline), 500 mg/kg bile acids (bile acids) or 800 mg/kg choline chloride plus 500 mg/kg bile acids (ChB), respectively) and for 28-d feeding trail. Results: ChB significantly increased average daily gain (ADG) and reduced feed/gain (F/G) ratio, associated with elevation of lipase activity and total bile acids level in ileal digesta compared with control diet. Additionally, ChB altered colonic microbiota by increasing the relative abundance of Lactobacillus and Faecalibacterium , and decreasing the relative abundances of unidentified-Clostridiales , Parabacteroides and Unidentified-Ruminococcaceae , when compared with control diet. Meanwhile, ChB increased the butyrate level and decreased the production of bile acid profiles in the colonic digesta. Besides, feeding ChB improved gut immunity, as reflected by increasing the abundance of IL-10 , FXR and mucin2 transcript, while downregulated expression of TLR4 , MyD88 , NF-κBp65 and TNF-α genes in the intestinal mucosa. Quantitative proteomics of jejunal mucosa further showed that ChB regulated the proteins that were related to inflammatory response. Furthermore, the changes in the ADG and genes expression were associated with alteration of gut microbiota composition and their metabolites. Conclusions: Collectively, our findings demonstrated that choline and bile acids mixture may improve the growth performance and intestinal immune response of weaned piglets through alteration of gut microbiota composition and bacterial metabolites, which promoted gut health.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yongdi Zeng ◽  
Zirui Wang ◽  
Tiande Zou ◽  
Jun Chen ◽  
Guanhong Li ◽  
...  

This study aimed to investigate the effects of dietary bacteriophage supplementation on growth performance, intestinal morphology, barrier function, and intestinal microbiota of weaned piglets fed antibiotic-free diet. A total of 120 weaned piglets were allotted to four dietary treatments with five pens/treatment and six piglets/pen in a 21-d feeding trial. The control diet was supplemented with 25 mg/kg quinocetone and 11.25 mg/kg aureomycin in the basal diet, while the three treatment diets were supplemented with 200, 400, or 600 mg/kg bacteriophage in the basal diet, respectively. There was no difference for growth performance and all measured indices of serum and intestinal tissues between 200 mg/kg bacteriophage group and the control group with antibiotics (P > 0.05). More importantly, compared with the control diet, dietary 400 mg/kg bacteriophage inclusion increased average daily gain and average daily feed intake, and decreased feed/gain ratio and diarrhea incidence of weaned piglets (P < 0.05). Also, piglets fed 400 mg/kg bacteriophage had elevated villi height (VH) in jejunum and ileum, reduced crypt depth (CD) in jejunum and ileum, and elevated VH/CD ratio in duodenum, jejunum and ileum (P < 0.05). Compared to the control group, piglets fed 400 mg/kg bacteriophage had lower interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and higher interleukin-10 (IL-10) concentration in serum, and higher secretory immunoglobulin A (sIgA), intestinal trefoil factor (ITF), and tumor growth factor-alpha (TGF-α) content in the ileal mucosa (P < 0.05). Besides, dietary addition with 400 mg/kg bacteriophage decreased the D-lactate concentration and diamine oxidase (DAO) activity in serum, and increased the relative mRNA expression of ZO-1, Claudin-1, Occludin, TLR2, TLR4, and TLR9, as well as the relative protein expression of Occludin in the jejunum (P < 0.05). However, the growth performance and all analyzed parameters in serum and intestinal tissues were not further improved when piglets fed 600 vs. 400 mg/kg bacteriophage (P > 0.05). MiSeq sequencing analysis showed that bacteriophage regulated the microbial composition in caecum digesta, as indicated by higher observed_species, Chao1, and ACE richness indices, as well as changes in the relative abundance of Firmicutes, Bacteroidetes, and Tenericutes (P < 0.05). Collectively, 400 mg/kg bacteriophage can be used as an antibiotics alternative for promoting the growth of weaned piglets. The underlying mechanism is associated with a positive effect of bacteriophage on intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets.


2006 ◽  
Vol 86 (4) ◽  
pp. 511-522 ◽  
Author(s):  
H. Namkung ◽  
J. Gong ◽  
H. Yu ◽  
C. F. M. de Lange

The effect of feeding pharmacological levels of zinc (Zn) and copper (Cu) to newly weaned piglets on growth performance, circulating cytokines levels and gut microbiota was investigated. One hundred eighty piglets [5.90 ± 0.18 kg body weight (BW); six pigs per pen] weaned at 16 to 19 d of age were fed diets containing 3000 ppm additional Zn, 250 ppm additional Cu or a control diet (150 ppm Zn, 15 ppm Cu) for 14 d post-weaning (weeks 1 and 2). Pigs were fed a control diet for an additional 2 wk. Pigs were injected intramuscularly on days 13 and 19 with either 75 μg kg-1 BW of coliform lipopolysaccharide (LPS) or an equivalent amount of saline. Blood samples were collected 3 h after LPS injection to measure plasma levels of cytokines and cortisol. Digesta of ileum and colon were collected from non-challenged pigs on days 14 and 28 to evaluate microbiota using conventional culturing methods and polymerase chain reaction and denaturing gradient gel electrophoresis (PCRDGGE) analysis of the 16S rRNA genes. There were no interactive effects of diet and LPS challenge on growth performance (P > 0.10). Compared with the control, high dietary Zn and Cu increased (P < 0.01) average daily gain (ADG) during weeks 1 (0.125, 0.091 vs. 0.074 kg; P < 0.05) and 2 (0.240, 0.270 vs. 0.155 kg; P < 0.01) only. LPS injection reduced ADG during weeks 2 and 4 (P < 0.01). Dietary treatment did not affect feed efficiency (P > 0.10). Challenging pigs with LPS reduced (P < 0.01) feed efficiency during week 2, but increased (P < 0.05) feed efficiency during week 3. There were no interactive effects between diet and LPS on plasma cytokines levels, except for cortisol (P < 0.05). Plasma levels of cytokines (interleukin-1β, interferon-γ, tumour necrosis factor-α) and cortisol increased (P < 0.01) in pigs challenged with LPS. The high levels of dietary Zn and Cu reduced (P < 0.05) the increases in plasma cortisol level in LPS-challenged pigs at days 9 and 19. There were no differences among the dietary treatments in counts of coliforms and lactobacillus in the digesta from ileum and colon (P > 0.10). PCR-DGGE analysis showed that high levels of dietary Zn and particularly Cu significantly reduced the diversity of ileal microbiota. The effect on microbiota diversity was reversible when dietary Zn and Cu were removed. Enhanced growth performance of the newly weaned piglets fed high dietary Zn and Cu appears mediated via changes in gut microbiota as well as a reduced cortisol response following an immune challenge. Key words: Piglets, zinc, copper, lipopolysaccharide, gut microbiota, cytokines


2021 ◽  
Vol 9 (6) ◽  
pp. 1342
Author(s):  
Yusen Wei ◽  
Jiangdi Mao ◽  
Jingliang Liu ◽  
Yu Zhang ◽  
Zhaoxi Deng ◽  
...  

Tributyrin and essential oils have been used as alternatives to antimicrobials to improve gut health and growth performance in piglets. This study was to evaluate the effects of a dietary supplement with two encapsulated products containing different combinations of tributyrin with oregano or with methyl salicylate on growth performance, serum biochemical parameters related to the physiological status, intestinal microbiota and metabolites of piglets. A total of 108 weaned crossbred piglets (Yorkshire × Landrace, 21 ± 1 d, 8.21 ± 0.04 kg) were randomly divided into three groups. Piglets were fed with one of the following diets for 5 weeks: a basal diet as the control (CON); the control diet supplemented with an encapsulated mixture containing 30% of methyl salicylate and tributyrin at a dosage of 3 kg/t (CMT); and the control diet supplemented with an encapsulated mixture containing 30% of oregano oil and tributyrin at a dosage of 3 kg/t (COT). At the end of the feeding trial, six piglets from each group were slaughtered to collect blood and gut samples for physiological status and gut microbiological analysis. The study found that the CMT group was larger in feed intake (FI) (p < 0.05), average daily gain (ADG) (p = 0.09), total protein (TP), albumin (ALB), glutathione peroxidase (GSH-PX) (p < 0.05), blood total antioxidant capacity (T-AOC) (p < 0.05), and crypt depth in the ileum (p < 0.05) compared with the CON group. The genus abundance of Tissierella and Campylobacter in the CMT group was significantly decreased compared with the CON group. The CMT group also resulted in significantly higher activity in amino acid metabolism and arginine biosynthesis compared with the CON group. The COT group was larger in T-AOC, and the genus abundance of Streptophyta and Chlamydia was significantly increased in the ileum compared with the CON group. Data analysis found a significantly high correlation between the genus abundance of Chlamydia and that of Campylobacter in the ileum. The genus abundance of Campylobacter was also positively correlated with the sorbitol level. In general, the results indicated that the supplementation of both encapsulated mixtures in diet of weaned piglets could improve the animal blood antioxidant capacity. Additionally, the encapsulated mixture of methyl salicylate plus tributyrin improved the growth performance and resulted in certain corresponding changes in nutrient metabolism and in the genus abundance of ileum microbial community.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Han ◽  
Zemin Liu ◽  
Jie Yin ◽  
Jing Gao ◽  
Liuqin He ◽  
...  

Oxidative stress commonly occurs in pig production, which can severely damage the intestinal function of weaned piglets. This study was conducted to investigate the effects of D-galactose with different levels used to induce chronic oxidative stress on growth performance, intestinal morphology and gut microbiota in weaned piglets. The results showed that addition of 10 and 20 g/kg BW D-galactose reduced average daily gain and average daily feed intake from the first to the third week. 10 g/kg BW D-galactose increased the concentration of serum MDA at the second and third week. 10 g/kg BW D-galactose significantly influenced the jejunal and ileal expressions of GPx1, CAT1, and MnSOD. The results of 16S rRNA sequencing showed that compared with the control, 10 and 20 g/kg BW D-galactose significantly decreased the relative abundance of Tenericutes, Erysipelotrichia, Erysipelotrichales, and Erysipelotrichaceae, while increased the relative abundance of Negativicutes, Selenomonnadales, and Veillonellaceae. The results indicated that treatment with 10 g/kg BW/day D-galactose for 3 weeks could induce chronic oxidative stress, reduce the growth performance and alter gut microbiota in weaned piglets.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2186
Author(s):  
Shilong Liu ◽  
Xiaoping Zhu ◽  
Yueqin Qiu ◽  
Li Wang ◽  
Xiuguo Shang ◽  
...  

This study aimed to investigate the effects of niacin on growth performance, intestinal morphology, intestinal mucosal immunity, and colonic microbiota in weaned piglets. A total of 96 weaned piglets (Duroc × (Landrace × Yorkshire), 21-d old, 6.65 ± 0.02 kg body weight (BW)) were randomly allocated into 3 treatment groups (8 replicate pens per treatment, each pen containing 4 males; n = 32/treatment) for 14 d. Piglets were fed a control diet (CON) or the CON diet supplemented with 20.4 mg/kg niacin (NA) or an antagonist for the niacin receptor GPR109A (MPN). The results showed that NA or MPN had no effect on ADG, ADFI, G/F or diarrhea incidence compared with the CON diet. However, compared with piglets in the NA group, piglets in the MPN group had lower ADG (p = 0.042) and G/F (p = 0.055). In comparison with the control and MPN group, niacin supplementation increased the villus height and the ratio of villus height to crypt depth (p < 0.05), while decreasing the crypt depth in the duodenum (p < 0.05). Proteomics analysis of cytokines showed that niacin supplementation increased the expression of duodenal transforming growth factor-β (TGF-β), jejunal interleukin-10 (IL-10) and ileal interleukin-6 (IL-6) (p < 0.05), and reduced the expression of ileal interleukin-8 (IL-8) (p < 0.05) compared with the control diet. Piglets in the MPN group had significantly increased expression of ileal IL-6, and jejunal IL-8 and interleukin-1β (IL-1β) (p < 0.05) compared with those in the control group. Piglets in the MPN group had lower jejunal IL-10 level and higher jejunal IL-8 level than those in the NA group (p < 0.05). The mRNA abundance of duodenal IL-8 and ileal granulocyte-macrophage colony-stimulating factor (GM-CSF) genes were increased (p < 0.05), and that of ileal IL-10 transcript was decreased (p < 0.05) in the MPN group compared with both the control and NA groups. Additionally, niacin increased the relative abundance of Dorea in the colon as compared with the control and MPN group (p < 0.05), while decreasing that of Peptococcus compared with the control group (p < 0.05) and increasing that of Lactobacillus compared with MPN supplementation (p < 0.05). Collectively, the results indicated that niacin supplementation efficiently ensured intestinal morphology and attenuated intestinal inflammation of weaned piglets. The protective effects of niacin on gut health may be associated with increased Lactobacillus and Dorea abundance and butyrate content and decreased abundances of Peptococcus.


Author(s):  
D.X. Dang ◽  
K.D. Han ◽  
I.H. Kim

A volatile herbal extract (VHE), consisting of 150 g/kg anethole, 15 g/kg bebaudioside A, 2.1 g/kg thymol, 2.0 g/kg eugenol and 2.3 g/kg cinnamic aldehyde, was fed to sows and their weaned offspring to evaluate its effect on the reproductive performance of sows and the growth performance of weaned piglets. A total of 18 sows (Landrace × Yorkshire) were randomly assigned to dietary treatments based on average parity (1.78) with nine replicates per treatment. The feeding period was 35 days, from d 7 before farrowing to d 7 after weaning. The lactation period was 21 d. A total of 96 piglets were randomly selected from each sow treatment group and allocated to 24 replicate pens with four pigs (mixed sex) per pen. The feeding period of weaned piglets was 35 days (phase 1, days 1-7; phase 2, days 8-21; phase 3, days 22-35). Dietary treatments in sows and weaned piglets consisted of a basal control diet with or without 500 mg/kg VHE. The data showed that VHE supplementation had no effect on the reproductive performance of sows, but improved the growth performance of weaned piglets, in which the increase of average daily gain during days 1-7 (P=0.006) and 1-35 (P=0.032) and feed efficiency during days 22-35 (P=0.026) and 1-35 (P=0.020) in weaned piglets were observed. Therefore, supplementing VHE to the diet of sows and their weaned offspring was beneficial to the growth performance of weaned piglets.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yueqin Qiu ◽  
Jun Yang ◽  
Li Wang ◽  
Xuefen Yang ◽  
Kaiguo Gao ◽  
...  

Abstract Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2030
Author(s):  
Anna Szuba-Trznadel ◽  
Anna Rząsa ◽  
Tomasz Hikawczuk ◽  
Bogusław Fuchs

The aim of this study was to evaluate the effect of zinc (Zn) supplementation in different commercial forms on the growth performance, health status, and Zn balance of weaners in field conditions. The animals were fed pre-starter (from the 28th to 47th day of life) and starter (from the 48th to 74th day of life) mixtures differing in Zn form and concentration. Group I was given ZnSO4 at 150 mg kg−1; Group II received pre-starter zinc oxide (ZnO) at 3000 mg kg−1 and starter at 150 mg kg−1; and Group III was given 150 mg kg−1 of zinc oxide nanoparticles (nZnO). We found that the average daily gain in Group I was significantly lower, compared to Groups II and III. A commonly accepted level of Zn (150 mg kg−1) as nZnO can be recommended, instead of therapeutic doses of Zn preparations with the same efficiency. Moreover, a lower level of Zn in the diet can prevent the excessive accumulation of this element in waste and, thus, reduce environmental damage.


Sign in / Sign up

Export Citation Format

Share Document