A liquid nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3×10-18

Author(s):  
Yao Huang ◽  
Baolin Zhang ◽  
Mengyan Zeng ◽  
Yanmei Hao ◽  
Huaqing Zhang ◽  
...  

Abstract Here we present a liquid nitrogen-cooled Ca+ optical clock with an overall systematic uncertainty of 3×10-18. In contrast with the room-temperature Ca+ optical clock that we have reported previously, the temperature of the blackbody radiation (BBR) shield in vacuum has been reduced to 82(5) K using liquid nitrogen. An ion trap with a lower heating rate and improved cooling lasers were also introduced. This allows cooling the ion temperature to the Doppler cooling limit during the clock operation, and the systematic uncertainty due to the ion’s secular (thermal) motion is reduced to < 1×10-18. The uncertainty due to the probe laser light shift and the servo error are also reduced to < 1×10-19 and 4×10-19 with the hyper-Ramsey method and the higher-order servo algorithm, respectively. By comparing the output frequency of the cryogenic clock to that of a room-temperature clock, the differential BBR shift between the two was measured with a fractional statistical uncertainty of 7×10-18. The differential BBR shift was used to calculate the static differential polarizability, and it was found in excellent agreement with our previous measurement with a different method. This work suggests that the BBR shift of optical clocks can be well suppressed in a liquid nitrogen environment. This is advantageous because conventional liquid-helium cryogenic systems for optical clocks are more expensive and complicated. Moreover, the proposed system can be used to suppress the BBR shift significantly in other types of optical clocks such as Yb+, Sr+, Yb, Sr, etc.

Author(s):  
Louis T. Germinario

A liquid nitrogen stage has been developed for the JEOL JEM-100B electron microscope equipped with a scanning attachment. The design is a modification of the standard JEM-100B SEM specimen holder with specimen cooling to any temperatures In the range ~ 55°K to room temperature. Since the specimen plane is maintained at the ‘high resolution’ focal position of the objective lens and ‘bumping’ and thermal drift la minimized by supercooling the liquid nitrogen, the high resolution capability of the microscope is maintained (Fig.4).


2011 ◽  
Vol 391-392 ◽  
pp. 1445-1449
Author(s):  
Chun Hua Zhang ◽  
Shi Lin Luan ◽  
Xiu Song Qian ◽  
Bao Hua Sun ◽  
Wen Sheng Zhang

The influences of low temperature on the interlaminar properties for PBO fiber/epoxy composites have been studied at liquid nitrogen temperature (77 K) in terms of three point bending test. Results showed that the interlaminar shear strength at 77 K were significantly higher than those at room temperature (RT). For the analysis of the test results, the tensile behaviors of epoxy resin at both room temperature and liquid nitrogen temperature were investigated. The interface between fiber and matrix was observed using SEM images.


Author(s):  
M. Quan ◽  
M.S. Mulders ◽  
D.G.A. Meltzer

Investigaltions to determine the effect of sample storage on the concentration of copper in liver tissue and on the activity of erythrocyte superoxide dismutase were undertaken in preparation for a study of blesbok (Damaliscus pygargus phillipsi) that were suspected to be suffering from copper deficiency. Two liver samples were collected from each of 20 culled blesbok in a manner that simulated the collection of biopsies from the live animal. These samples were stored either in 10 % formalin or frozen at -20 °C until analysed 4 1/2 months later. The effect of different methods of sample storage on superoxide dismutase activity was determined. Erythrocytes collected from 3 Jersey cows and 5 culled blesbok were washed and divided into 0.5m portions, stored at room temperature (~20 °C), in a refrigerator (4 °C), frozen at -20 °C in a freezer, and in liquid nitrogen (-200 °C). An analysis of superoxide dismutase activity was undertaken using a commercial assay kit at intervals of 2-4 days until the levels of activity had fallen significantly. The copper concentration in formalin-preserved liver samples was significantly lower than that measured in frozen liver tissue apparently as a result of leaching. The activity of superoxide dismutase in cattle blood was unchanged for 4 days at room temperature but fell appreciably after 2 days at 4 °C and -20 °C. Enzyme activity remained unchanged for 200 days in erythrocytes stored in liquid nitrogen. Superoxide dismutase activity levels in healthy blesbok were considerably lower than those measured in Jersey cows and remained unaffected for up to 6 days in samples stored at 4 °C and 20 °C. The level of activity fell significantly thereafter. Samples stored in liquid nitrogen were unchanged after 40 days.


2021 ◽  
Vol 38 ◽  
pp. 00046
Author(s):  
Margarita Ishmuratova ◽  
Saltanat Tleukenova ◽  
Alibek Ramasanov ◽  
Elena Gavrilkova ◽  
Dmitrii Ageev

For the first time, the depending of germination rate and energy of germination of Chartolepis intermedia seeds, collected in the wild of Karaganda region, from morphology of seeds and conditions of cryopreservation is investigated. The maximum results for viability are fixed for dark-colored average or large seeds. The best results are determined for variant of cryopreservation in plastic container with future defrosting at the room temperature. For the increasing parameters of seed germination we recommended to freeze Chartolepis intermedia seeds with using cryoprotector sucrose in concentration 20%. As the results of the study, we developed algorithm of cryopreservation of Chartolepis intermedia seeds in liquid nitrogen.


2020 ◽  
Vol 993 ◽  
pp. 806-810
Author(s):  
Zhi Wei Zhang ◽  
Bing Wei Luo ◽  
Hai Tao Zhou ◽  
Fen Wang

Rapid preparation of nanocrystalline γ-Fe2O3 powder with superparamagnetism was realized by cryomilling commercial Fe2O3 powder using liquid nitrogen. The effects of milling temperature and duration on the grain size, phase and microstructure of the nanocrystalline Fe2O3 powder were analyzed. Magnetic property of the nanocrystalline γ-Fe2O3 powder was also tested by magnetometer at room temperature. The results demonstrate that nanocrystalline γ-Fe2O3 powder with single phase can be prepared rapidly by cryomilling with liquid nitrogen. The mean particle size of γ-Fe2O3 powder can be reduced from 300 nm to 13 nm by cryomilling at −130 °C within 3 hours. The nanocrystalline γ-Fe2O3 powder shows superparamagnetism at room temperature.


2007 ◽  
Vol 55 (5) ◽  
pp. 541 ◽  
Author(s):  
Sarah E. Ashmore ◽  
Roderick A. Drew ◽  
Mahmoud Azimi

This paper reports on the effects of pre- and post-liquid nitrogen modifications to a previously published protocol for vitrification-based cryopreservation of papaya (Carica papaya L.) shoot tips. The aim was to improve the protocol for application across a wider range of papaya genotypes. Results showed that recovery from cryopreservation is genotype dependent, but the post-subculture age of the shoot tips was not significant in the two genotypes tested. Pre-culture for 2 days gave greater recovery than that for 0, 1 or 4 days. The duration and temperature of exposure to plant vitrification solution 2 (PVS2) had the most significant impact, with optimal recovery of 60 and 64% with 10 min at room temperature or 20 min at 0°C, respectively. Exposure to PVS2 for greater than 30 min reduced recovery to below 20%. Post-cryopreservation recovery was highest in media containing 1.0 µm 6-benzylaminopurine (BAP) or a combination of BAP and gibberellic acid (GA3) (1.0 and 0.5 µm, respectively). Incubation in the dark for the first 24–48 h had no significant effect on recovery. A refined protocol was developed based on these results and application of this protocol proved to be effective across seven papaya genotypes and one related species, Vasconcellea pubescens V.M.Badillo. Genotypes previously showing no survival on an unrefined protocol recovered using this revised protocol.


1985 ◽  
Vol 53 ◽  
Author(s):  
F. Namavar ◽  
J. I. Budnick ◽  
F. H. Sanchez ◽  
H. C. Hayden

ABSTRACTWe have carried out a study to understand the mechanisms involved in the formation of buried SIO2 by high dose implantation of oxygen into Si targets. Oxygen ions were implanted at 150 keV with doses up to 2.5 X 1018 ions/cm2 and a current density of less than 10 μA/cm2 into Si 〈100〉 at room and liquid nitrogen temperatures. In-situ Rutherford backscattering (RBS) analysis clearly indicates the formation of uniform buried SIO2 for both room and liquid nitrogen temperatures for doses above 1.5 X 1018/cm2.Oxygen ions were implanted at room temperature into crystalline quartz to doses of about 1018 ions cm2 at 150 keV, with a current density of 〈10〉10 μA/cm2. The RBS spectra of the oxygen implanted quartz cannot be distinguished from those of unimplanted ones. Furthermore, Si ions were implanted into crystalline quartz at 80 keV and dose of 1 X 1017 Si/cm2, and a current aensity of about 1 μA/cm2. However, no signal from Si in excess of the SiO2 ratio could be observed. Our results obtained by RBS show that implantation of either Si+ or O into SiO2 under conditions stated above does not create a layer whose Si:O ratio differs measurably from that of SiO2.


Sign in / Sign up

Export Citation Format

Share Document