scholarly journals Influence of Coal Ash on the Concrete Properties and Its Performance Under Sulphate and Chloride Conditions

Author(s):  
Sajjad Ali Mangi ◽  
Mohd Haziman Wan Ibrahim ◽  
Norwati Jamaluddin ◽  
Mohd Fadzil Arshad ◽  
Shabir Hussain Khahro ◽  
...  

Abstract This study investigated the influence of Coal Bottom Ash (CBA) on the concrete properties and evaluate the effects of combined exposure of sulphate and chloride conditions on the concrete containing CBA. During concrete mixing, cement was replaced with CBA by 10% of cement weight. Initially, concrete samples were kept in normal water for 28 days. Next, the specimens were moved to combined solution of 5% Sodium sulphate (Na2SO4) and 5% sodium chloride (NaCl) solution for further 28 to 180 days. The experimental findings demonstrated that the concrete containing 10% CBA (M2) gives 12% higher compressive strength than the water cured normal concrete (M1). However, when it was exposed to solution of 5% Na2SO4 and 5% NaCl, gives 0.2% greater compressive strength with reference to M1. The presence of 10% CBA decreases the chloride penetration and drying shrinkage around 33.6% and 29.2% respectively at 180 days. Hence, this study declared 10% CBA as optimum that can be used for future research.

2016 ◽  
Vol 857 ◽  
pp. 400-404
Author(s):  
Tian Yu Xie ◽  
Togay Ozbakkaloglu

This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash-, and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. Four bathes of GPC were manufactured to investigate the influence of the fly ash-to-bottom ash mass ratio on the microstructure, compressive strength and elastic modulus of GPC. All the results indicate that the mass ratio of fly ash-to-bottom ash significantly affects the microstructure and mechanical properties of GPCs


2013 ◽  
Vol 594-595 ◽  
pp. 527-531
Author(s):  
Mohamad Ezad Hafez Mohd Pahroraji ◽  
Hamidah Mohd Saman ◽  
Mohamad Nidzam Rahmat ◽  
Kartini Kamaruddin ◽  
Ahmad Faiz Abdul Rashid

Millions tons of coal ash which constitute of fly ash and bottom ash were produced annually throughout the world. They were significant to be developed as masonry brick to substitute the existing widely used traditional material such as clay and sand brick which were produced from depleting and dwindling natural resources. In the present study, the coal ash from coal-fired thermal power plant was used as the main raw material for the fabrication of cementless unfired lightweight brick. The binder comprising of Hydrated Lime (HL)-activated Ground Granulated Blastfurnace Slag (GGBS) system at binding ratio 30:70, 50:50 and 70:30 were used to stabilize the coal ash in the fabrication process of the brick. Foam was used to lightweight the brick. The compressive strength and ambient density were evaluated on the brick. The results indicated that the brick incorporating HL-GGBS system achieved higher strength of 20.84N/mm2 at 28 days compare to the HL system with strength of 13.98N/mm2 at 28 days. However, as the quantity of foam increase at 0%, 25%, 50%, 75% and 100%, the strength and density for the brick decreased.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2674 ◽  
Author(s):  
Souad El Moudni El Alami ◽  
Raja Moussaoui ◽  
Mohamed Monkade ◽  
Khaled Lahlou ◽  
Navid Hasheminejad ◽  
...  

Industrial waste causes environmental, economic, and social problems. In Morocco, the Jorf Lasfar Thermal Power Station produces two types of coal ash with enormous quantities: fly ash (FA) and Bottom ash (BA). FA is recovered in cement while BA is stored in landfills. To reduce the effects of BA disposal in landfills, several experimental studies have tested the possibility of their recovery in the road construction, especially as a subbase. In the first phase of this study, the BA underwent a physicochemical and geotechnical characterization. The results obtained show that the BA should be treated to improve its mechanical properties. The most commonly used materials are lime and cement. In the selected low-cost treatment, which is the subject of the second phase of the study, lime is used to improve the low pozzolanicity of BA while calcarenite sand is used to increase the compactness. Several mixtures containing BA, lime, and calcarenite sand were prepared. Each of these mixtures was compacted in modified Proctor molds and then subjected to a series of tests to study the following characteristics: compressive strength, dry and wet California Bearing Ratio (CBR), dry density and swelling. The composition of each mixture was based on an experimental design approach. The results show that the values of the compressive strength, the dry density, and the CBR index have increased after treatment, potentially leading to a valorization of the treated BA for use in a subbase.


Author(s):  
Gum Sung Ryu ◽  
Kyung Taek Koh ◽  
Gi Hong An ◽  
Jang Hwa Lee

This paper evaluates the strength, shrinkage and durability characteristics of concrete using 100% fly ash and bottom ash as binder. It is seen that the compressive strength of activated fly ash and bottom ash concrete reaches respectively 25 MPa and 30 MPa, and that the change in strength is insignificant as per the content of bottom ash powder. Moreover, the total amount of shrinkage of the activated bottom ash concrete appears to be larger than that of the activated fly ash concrete. In addition, the drying shrinkage and durable performance of the activated ash geopolymer concrete is verified to be superior to that of ordinary cement concrete.


2021 ◽  
Vol 7 (1) ◽  
pp. 98-106
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Coal fly ash (CFA), coal bottom ash (CBA) are residues produced in thermo-electrical power stations as result of the coal combustion in the same boiler. Therefore, some characteristics of the coal fly ash (CFA) are comparable with those of the coal bottom ash (CBA). Nevertheless, coal bottom ash size is larger than coal fly ash one. Consequently, it was found that it is necessary to grind the coal bottom ash (CBA) to reach a similar size to that one of the CFA. The objective of this paper is to evaluate the performance of Portland cement mortars made with coal fly ash (CFA), coal bottom ash (CBA) or mixes (CFA+CBA), against sulphate attack. The methodology is based on the expansion of slender bars submerged in a sodium sulphate solution (5%) according to the ASTM C-1012/C1012-13 standard. It has been found that mortars elaborated with CEM I 42.5 N (without ashes) presented the largest expansion (0.09%) after a testing period of 330 days. Mortars made with CEM II/A-V exhibited lower expansion (0.03%). Summing up, it can be established that mortar expansion decreases when the coal ash amount increases, independently of the type of coal ash employed. The novelty of this paper relies on the comparison between the performances of Portland cement mortars made with coal fly ash (CFA) or coal bottom ash (CBA) exposed to external sulphate attack. Doi: 10.28991/cej-2021-03091640 Full Text: PDF


2016 ◽  
Vol 857 ◽  
pp. 395-399 ◽  
Author(s):  
Tian Yu Xie ◽  
Togay Ozbakkaloglu

This paper presents the results of an experimental study on the behavior of bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. A total of five bathes of bottom ash-based GPC were manufactured. The influence of the particle size and chemical composition of bottom ash on the compressive strength of GPC was investigated. The results indicate that the investigated parameters significantly affect the 28-day compressive strength of bottom ash-based GPCs. It is also found that the strength gain of ambiently-cured coal ash-based GPCs continues beyond the concrete age of 28 days.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 14
Author(s):  
Yuanlong Wang ◽  
Yongqi Zhao ◽  
Yunshan Han ◽  
Min Zhou

This study aimed to determine the effect of circulating fluidised bed bottom ash (CFB-BA) content on the mechanical properties and drying shrinkage of cement-stabilised soil. Experiments were performed to study the changes in unconfined compressive strength and expansibility of cement-stabilised soil with different CFB-BA contents and the underlying mechanisms based on microscopic properties. The results show that CFB-BA can effectively increase the unconfined compressive strength of the specimen and reduce the amount of cement in the soil. When the combined content of CFB-BA and cement in the soil was 30%, the unconfined compressive strength of the specimen with C/CFB = 2 after 60 days of curing was 10.138 MPa, which is 1.4 times that of the pure cement specimen. However, the CFB-BA does not significantly improve the strength of the soil and cannot be added alone as a cementing material to the soil. Additionally, swelling tests showed that the addition of CFB-BA to cement-stabilised soil can significantly reduce the drying shrinkage. This research project provides reference values for the application of CFB-BA in cement–soil mixing piles, including compressive strength and the reduction in the shrinkage deformation of specimens.


2019 ◽  
Vol 974 ◽  
pp. 312-318
Author(s):  
Lam Tang Van ◽  
Dien Vu Kim ◽  
Boris I. Bulgakov ◽  
Sofia I. Bazhenova

Nowadays various light concrete types have many advantages as compared to heavyweight concrete (total structures mass decrease, increased thermophysical properties, less material consumption). Various industrial wastes use such as fly ashes, slag and bottom ash was suggested to enhance the light concretes effectiveness. This is greatly important for a green light concrete production since it is very important to obtain new types of environmentally friendly materials using wastes. The article substantiates the light concrete use and creation with organo-mineral additives based on industrial waste, analysis of the second-order mathematical model describing the bottom ash (BA) amount effect of Vung Ang TPP and expandable polystyrene spheres (EPS) on the light concrete density and compressive strength at the age of 28 days of normal hardening is done. In this work, the BA and EPS amounts varied from 14.5 to 45.5%, respectively, of the cement weight and from 24.5 to 55.5% of the concrete mix volume. The effect of expanded polystyrene spheres (EPS) and bottom ash (BA) TPP "Vung Ang" amounts as the input parameters on the polystyrene concrete properties (PCP) were investigated in this study. On the one hand, various proportions of BA (14.5, 20, 30, 40 and 45.5%) were blended in concrete mixes as partial weight replacement for Portland cement. On the other hand, EPS amount was replaced by the fresh concrete volume in the range from 24.5% to 55.5%. Additionally, the central composite design method of Box-Wilson for second order factors was used to predict the EPS and BA effects on the polystyrene concrete properties. The results showed that the proposed regression equations of this mathematical model achieved an adequate prediction accuracy. Hence, the effects of both bottom ash contents and expanded polystyrene spheres on the dry density and 28-day compressive strength of the PSC-specimens were significant. In the future, further investigations have to be carried out to study the quality prediction of green light concrete containing various wastes.


Sign in / Sign up

Export Citation Format

Share Document