Mathematical Simulation of Bottom Ash Effect and Expanded Polystyrene on the Polystyrene Concrete Properties

2019 ◽  
Vol 974 ◽  
pp. 312-318
Author(s):  
Lam Tang Van ◽  
Dien Vu Kim ◽  
Boris I. Bulgakov ◽  
Sofia I. Bazhenova

Nowadays various light concrete types have many advantages as compared to heavyweight concrete (total structures mass decrease, increased thermophysical properties, less material consumption). Various industrial wastes use such as fly ashes, slag and bottom ash was suggested to enhance the light concretes effectiveness. This is greatly important for a green light concrete production since it is very important to obtain new types of environmentally friendly materials using wastes. The article substantiates the light concrete use and creation with organo-mineral additives based on industrial waste, analysis of the second-order mathematical model describing the bottom ash (BA) amount effect of Vung Ang TPP and expandable polystyrene spheres (EPS) on the light concrete density and compressive strength at the age of 28 days of normal hardening is done. In this work, the BA and EPS amounts varied from 14.5 to 45.5%, respectively, of the cement weight and from 24.5 to 55.5% of the concrete mix volume. The effect of expanded polystyrene spheres (EPS) and bottom ash (BA) TPP "Vung Ang" amounts as the input parameters on the polystyrene concrete properties (PCP) were investigated in this study. On the one hand, various proportions of BA (14.5, 20, 30, 40 and 45.5%) were blended in concrete mixes as partial weight replacement for Portland cement. On the other hand, EPS amount was replaced by the fresh concrete volume in the range from 24.5% to 55.5%. Additionally, the central composite design method of Box-Wilson for second order factors was used to predict the EPS and BA effects on the polystyrene concrete properties. The results showed that the proposed regression equations of this mathematical model achieved an adequate prediction accuracy. Hence, the effects of both bottom ash contents and expanded polystyrene spheres on the dry density and 28-day compressive strength of the PSC-specimens were significant. In the future, further investigations have to be carried out to study the quality prediction of green light concrete containing various wastes.

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2674 ◽  
Author(s):  
Souad El Moudni El Alami ◽  
Raja Moussaoui ◽  
Mohamed Monkade ◽  
Khaled Lahlou ◽  
Navid Hasheminejad ◽  
...  

Industrial waste causes environmental, economic, and social problems. In Morocco, the Jorf Lasfar Thermal Power Station produces two types of coal ash with enormous quantities: fly ash (FA) and Bottom ash (BA). FA is recovered in cement while BA is stored in landfills. To reduce the effects of BA disposal in landfills, several experimental studies have tested the possibility of their recovery in the road construction, especially as a subbase. In the first phase of this study, the BA underwent a physicochemical and geotechnical characterization. The results obtained show that the BA should be treated to improve its mechanical properties. The most commonly used materials are lime and cement. In the selected low-cost treatment, which is the subject of the second phase of the study, lime is used to improve the low pozzolanicity of BA while calcarenite sand is used to increase the compactness. Several mixtures containing BA, lime, and calcarenite sand were prepared. Each of these mixtures was compacted in modified Proctor molds and then subjected to a series of tests to study the following characteristics: compressive strength, dry and wet California Bearing Ratio (CBR), dry density and swelling. The composition of each mixture was based on an experimental design approach. The results show that the values of the compressive strength, the dry density, and the CBR index have increased after treatment, potentially leading to a valorization of the treated BA for use in a subbase.


2021 ◽  
Vol 1033 ◽  
pp. 163-171
Author(s):  
Alexandra Reto ◽  
Renzo Sanabria ◽  
José Rodriguez ◽  
Alexandra Hinostroza

The precast concrete elements in the construction of buildings are increasingly used due to their better quality control, constructive speed, reduction of the number of workers and less waste of resources compared to conventional construction; for wall applications, to these advantages, the design to ensure thermal comfort requires the improvement of the low thermal insulation of conventional concrete panels. The use of materials with lower thermal conductivity such as Expanded PolyStyrene Beads (EPSB) in lightweight concrete for the construction of precast panels in housing, contributes to improve thermal insulation and the saving operational energy during its operation phase, because the aggregate has a small size, low density and thermal conductivity; applied in higher volumes in concrete, reduces indoor heat loss in cold climates and indoor heat gain in warm climates in housing. The purpose of this research is to study the behavior of lightweight concrete with EPSB for 16%, 26% and 36% addition and evaluate the air-dry density, compressive strength, thermal conductivity, relationship between air-dry density with compressive strength and thermal conductivity. The results indicate that the higher the percentage of EPSB the air-dry density, compressive strength and thermal conductivity decrease; the relationships between air-dry density with compressive strength and thermal conductivity follow a linear trend and are similar.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wenbo Shi ◽  
Linchang Miao ◽  
Junhui Luo ◽  
Jiaqi Wang ◽  
Yinan Chen

EPS concrete was produced by mixing the expanded polystyrene spheres (EPS) and polymer emulsion and thickener to the matrix concrete, and this concrete had good vibration energy absorption characteristics. Based on the experimental data obtained on EPS volume ratio of 0%, 20%, 30%, and 40% by replacing matrix or coarse aggregate, the two design styles had nearly the same compressive strength. By applying frequency of 5 Hz, 50000 or 100000 times, 40 KN, 50 KN, and 60 KN cyclic loading, it is shown that the higher the inclusion size was, the lower the compressive strength of the EPS concrete would be; the larger the applying dynamic cyclic load was, the more obvious the compressive strength changing would be. Meanwhile, the strength of EPS concrete had no evident change after durability test. The results of this research had practical significance on using EPS concrete in some long-term cyclic dynamic load engineering.


2020 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
Amit Kumar ◽  
Kiran Devi ◽  
Maninder Singh ◽  
Dharmender Kumar Soni

The evolution of industries is essential for the economic growth of any country; however, this growth often comes with exploitation of natural resources and generation of wastes. The safe disposal and utilisation of industrial wastes has become essential for sustainable development. A possible approach would be to utilize these wastes in construction industries. The stone industry is one such flawed industries that generates waste in dust or slurry form; this leads harmful impacts on human beings, animals, and surrounding areas which, in turn, can lead to soil infertility. In the present study, stone waste was examined for its influence on maximum dry density (MDD), optimum water content (OMC) and unconfined compressive strength (UCS) of soil experimentally. Stone waste was used at 0%, 4%, 8%, 12%, 16% and 20% by weight of soil and UCS tests were conducted at maturing periods of 7, 14 and 21 days. Test results reported that the incorporation of stone waste improved the compressive strength value significantly. Maximum dry density was enhanced; however, optimum water content was reduced with the use of stone waste in soil due to its fine particles. Linear regression equations were also derived for various properties.


2021 ◽  
Author(s):  
Sajjad Ali Mangi ◽  
Mohd Haziman Wan Ibrahim ◽  
Norwati Jamaluddin ◽  
Mohd Fadzil Arshad ◽  
Shabir Hussain Khahro ◽  
...  

Abstract This study investigated the influence of Coal Bottom Ash (CBA) on the concrete properties and evaluate the effects of combined exposure of sulphate and chloride conditions on the concrete containing CBA. During concrete mixing, cement was replaced with CBA by 10% of cement weight. Initially, concrete samples were kept in normal water for 28 days. Next, the specimens were moved to combined solution of 5% Sodium sulphate (Na2SO4) and 5% sodium chloride (NaCl) solution for further 28 to 180 days. The experimental findings demonstrated that the concrete containing 10% CBA (M2) gives 12% higher compressive strength than the water cured normal concrete (M1). However, when it was exposed to solution of 5% Na2SO4 and 5% NaCl, gives 0.2% greater compressive strength with reference to M1. The presence of 10% CBA decreases the chloride penetration and drying shrinkage around 33.6% and 29.2% respectively at 180 days. Hence, this study declared 10% CBA as optimum that can be used for future research.


2014 ◽  
Vol 20 (4) ◽  
pp. 581-589 ◽  
Author(s):  
Jurga Šeputytė-Jucikė ◽  
Georgij Arsenij Sezeman ◽  
Marijonas Sinica ◽  
Modestas Kligys ◽  
Saulius Vaitkus

The paper deals with the use of lightweight porous aggregate, i.e. crushed expanded polystyrene package crumbs (EPSC) in the composition of thermo-insulating plaster. Its effectiveness is compared to that of spherical granules of expanded polystyrene – white coloured (EPS) and grey coloured (NEOPOR). The content of lightweight aggregate changed from 1.25 to 1.75 l/kg of dry mix. The investigation focused on properties of modified plaster, such as density, compressive strength, thermal conductivity and water vapour permeability. It was established that EPSC reduce density of plaster from 1350 to 530 kg/m3, improving such properties as thermal conductivity and water vapour permeability but decreasing compressive strength. In addition, the paper established the adhesion force of plaster (content of lightweight aggregate was 1.25 l/kg of dry mix) to ceramics, silicate and autoclaved aerated concrete masonry elements. The character of macrostructure of plaster was considered, as well as bonding with a coat of decorative paint. It was found that plaster with EPSC has similar properties to plasters with EPS and NEOPOR aggregates; however, in case of EPSC, the relative vapour resistance is better. The provided regression equations can be used for prediction of differently modified plasters.


2020 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
Amit Kumar ◽  
Kiran Devi ◽  
Maninder Singh ◽  
Dharmender Kumar Soni

The evolution of industries is essential for the economic growth of any country; however, this growth often comes with exploitation of natural resources and generation of wastes. The safe disposal and utilisation of industrial wastes has become essential for sustainable development. A possible approach would be to utilize these wastes in construction industries. The stone industry is one such flawed industries that generates waste in dust or slurry form; this leads harmful impacts on human beings, animals, and surrounding areas which, in turn, can lead to soil infertility. In the present study, stone waste was examined for its influence on maximum dry density (MDD), optimum water content (OMC) and unconfined compressive strength (UCS) of soil experimentally. Stone waste was used at 0%, 4%, 8%, 12%, 16% and 20% by weight of soil and UCS tests were conducted at maturing periods of 7, 14 and 21 days. Test results reported that the incorporation of stone waste improved the compressive strength value significantly. Maximum dry density was enhanced; however, optimum water content was reduced with the use of stone waste in soil due to its fine particles. Linear regression equations were also derived for various properties.


2020 ◽  
Vol 998 ◽  
pp. 311-316
Author(s):  
Ichsan Rauf ◽  
Lawalenna Samang ◽  
Tri Harianto ◽  
Ardy Arsyad

The conventional embankment has disadvantages in terms of its weight; it has an implication for the level of deformation that will occur on the subgrade layer. This study was conducted dealing with the design of geocomposite material compositions based on their mechanic characteristics. The lightweight geocomposit material (LWGM) was constructed by composing soil with expanded polystyrene (EPS) with by-product of buton asphalt as the binder agent (WBA). Unconfined Compression Test (UCT) and California Bearing Ratio (CBR) were examined to figure out the mechanical behavior of LWGM. The percentages of WBA used on specimens were 3%, 5%, 7% and 9%, while those of EPS were 0.15% and 0.30%, based on weight of soils dry density. Furthermore, to understand the curing period effect, all the specimens were cured and tested within 7 days and 28 days. The results showed that the LWGM could reduce the embankment densities from 20% to 35%, compared to conventional embankment. The compressive strength and CBR values presented the same tendency, so that, based on correlation of UCS and CBR value, the LWGM compositions that are appropriate for road foundation criteria as subbase courses are 3.2% to 7% for the WBA and 0,15% - 0,30% for the EPS.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


Geotechnics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 38-58
Author(s):  
Pouyan Abbasimaedeh ◽  
Ali Ghanbari ◽  
Brendan C. O’Kelly ◽  
Mohsen Tavanafar ◽  
Kourosh Ghaffari Irdmoosa

Lightweight fill can be advantageous in embankment construction for the purposes of reducing the (i) bearing pressures on the underlying soil foundation, (ii) destabilizing moments for constructed earthen slopes, and (iii) earth pressures acting behind retaining walls. This paper investigates the merits/limitations of particulate expanded polystyrene (EPS) beads mixed with clayey sand (CS) soil as lightweight fill, considering both geotechnical and environmental perspectives. The bench-scale geotechnical testing programme included standard Proctor (SP) compaction, California bearing ratio (CBR), direct shear (sheardox), oedometer and permeability testing performed on two different gradation CS soils amended with 0.5, 1.5 and 3.0 wt.% EPS, investigating two nominal bead sizes equivalent to poorly-graded medium and coarse sands. Compared to the unamended soils, the compacted dry density substantially decreased with increasing EPS beads content, from 2.09 t/m3 (0 wt.% EPS) to as low as 0.33 t/m3 for 3 wt.% (73 v.%) of larger-sized EPS beads. However, from analyses of the test results for the investigated 50 to 400 kPa applied stress range, even 0.5 wt.% (21 v.%) EPS beads caused a substantial mechanical failure, with a drastic decay of the CBR and compressibility parameters for the studied CS soils. Given the more detrimental environmental cost of leaving myriads of separate EPS beads mixed forever among the soil, it is concluded that the approach of adding particulate EPS beads to soils for producing uncemented lightened fill should not be employed in geotechnical engineering practice.


Sign in / Sign up

Export Citation Format

Share Document