scholarly journals The agricultural waste utilization for exploration of the extracellular enzyme potential of three novel white-rot Basidiomycetes: Fomes fomentarius TMF2, Schizophyllum commune TMF3 and Bjerkandera adusta TMF1

Author(s):  
Nevena Ilić ◽  
Slađana Davidović ◽  
Marija Milić ◽  
Mirjana Rajilić-Stojanović ◽  
Danijela Pecarski ◽  
...  

Abstract Purpose This study aimed in exploitation of lignocellulosic wastes for the evaluation of the newly isolated white-rot fungal strains enzymatic potential, covered by the circular economy frame.Methods A standard microbiological methods for the isolation of the white-rot fungal mycelia were used, followed by DNA extraction, PCR amplification, and the API ZYM test. The determination of laccase activity was based on the oxidation of guaiacol while the DNS method was used for the hydrolase determination.Results The isolates, belonged to Basidiomycetes, Fomes fomentraius TMF2, Schizophyllum commune TMF3, and Bjerkandera adusta TMF1, could synthesize extracellular laccase and various hydrolase while growing on lignocellulosic waste materials. More specifically, for the first time, F. fomentarius TMF2 synthesized laccase using sunflower meal as a substrate. This substrate could stimulate B. adusta TMF1 for Carboxymethyl cellulase and Avicelase production. The strain TMF1 was able to produce amylase during its growth on brewerʼs spent grain, which is up to now the best result reported for this activity of any B. adusta strain. Soybean meal was the most potent substrate for stimulating pectinase production by TMF1 and S. commune TMF3. While growing on brewerʼs spent grain, TMF1 and TMF3 strains produced high levels of xylanase. Spent coffee residues were for the first time tested as a substrate for hydrolase production by selected fungal species.Conclusion The obtained results showed that newly isolates of white-rot fungi can grow on unexploited lignocellulosic waste materials to produce different enzymes as a value-added products suitable for various biotechnological applications.

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6333
Author(s):  
Virendra Kumar Yadav ◽  
Krishna Kumar Yadav ◽  
Vineet Tirth ◽  
Govindhan Gnanamoorthy ◽  
Nitin Gupta ◽  
...  

Environmental pollution is one of the major concerns throughout the world. The rise of industrialization has increased the generation of waste materials, causing environmental degradation and threat to the health of living beings. To overcome this problem and effectively handle waste materials, proper management skills are required. Waste as a whole is not only waste, but it also holds various valuable materials that can be used again. Such useful materials or elements need to be segregated and recovered using sustainable recovery methods. Agricultural waste, industrial waste, and household waste have the potential to generate different value-added products. More specifically, the industrial waste like fly ash, gypsum waste, and red mud can be used for the recovery of alumina, silica, and zeolites. While agricultural waste like rice husks, sugarcane bagasse, and coconut shells can be used for recovery of silica, calcium, and carbon materials. In addition, domestic waste like incense stick ash and eggshell waste that is rich in calcium can be used for the recovery of calcium-related products. In agricultural, industrial, and domestic sectors, several raw materials are used; therefore, it is of high economic interest to recover valuable minerals and to process them and convert them into merchandisable products. This will not only decrease environmental pollution, it will also provide an environmentally friendly and cost-effective approach for materials synthesis. These value-added materials can be used for medicine, cosmetics, electronics, catalysis, and environmental cleanup.


Fermentation ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 21 ◽  
Author(s):  
Sakae Horisawa ◽  
Akie Inoue ◽  
Yuka Yamanaka

The cost of bioethanol production from lignocellulosic materials is relatively high because the additional processes of delignification and saccharification are required. Consolidated bioprocessing (CBP) simultaneously uses the multiple processes of delignification, saccharification, and fermentation in a single reactor and has the potential to solve the problem of cost. Some wood-degrading basidiomycetes have lignin- and cellulose-degrading abilities as well as ethanol fermentation ability. The white rot fungus Schizophyllum commune NBRC 4928 was selected as a strong fermenter from a previous study. The lignin-degrading fungus Bjerkandera adusta and polysaccharide-degrading fungus Fomitopsis palustris were respectively added to S. commune ethanol fermentations to help degrade lignocellulosic materials. Bjerkandera adusta produced more ligninase under aerobic conditions, so a switching aeration condition was adopted. The mixed culture of S. commune and B. adusta promoted direct ethanol production from cedar wood. Fomitopsis palustris produced enzymes that released glucose from both carboxymethylcellulose and microcrystalline cellulose. The mixed culture of S. commune and F. palustris did not enhance ethanol production from cedar. The combination of S. commune and cellulase significantly increased the rate of ethanol production. The results suggest that CBP for ethanol production from cellulosic material can be achieved by using multiple fungi in one reactor.


2015 ◽  
Vol 46 ◽  
pp. 84-91 ◽  
Author(s):  
N. Praveen Kumar ◽  
Arun Arya

Fungi may cause internal decay, cankers, loosening of tissue and cell walls result into weak forks in the trunk and large branches. Tree rot may be associated with root decay, damage to foliage and fruits. Wood decay fungi isolated from Tamarindus indica were Daldinia concentrica, Schizophyllum commune, Flavodon flavus,Irpex hydnoides, and Phellinus fastuosus, in which D. concentrica causing canker rot is reported for the first time from India and F. flavus and I. hydnoidesP. fastuosus are recorded for the first time on T. indica wood causing white rot. During canker rot, formation of bark canker and extensive internal decay of wood was observed; as a result the tree growing in the M.S. University campus became structurally unstable and broken off at the canker face. Early detection and removal of such hazardous branches of trees is advocated to avoid loss of life and property.


RSC Advances ◽  
2021 ◽  
Vol 11 (36) ◽  
pp. 22365-22375
Author(s):  
Guangbing Liang ◽  
Yanhong Li ◽  
Chun Yang ◽  
Xun Hu ◽  
Qingyin Li ◽  
...  

In this work, industrial biomass power plant ash was used to synthesize the ZSM-5 zeolites for the first time with the original intention to turn value-added material into wealth, and then committed to adsorption performance testing.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Ran ◽  
Long Jin ◽  
Ranithri Abeynayake ◽  
Atef Mohamed Saleem ◽  
Xiumin Zhang ◽  
...  

Abstract Background Brewers’ spent grain (BSG) typically contains 20% – 29% crude protein (CP) with high concentrations of glutamine, proline and hydrophobic and non-polar amino acid, making it an ideal material for producing value-added products like bioactive peptides which have antioxidant properties. For this study, protein was extracted from BSG, hydrolyzed with 1% alcalase and flavourzyme, with the generated protein hydrolysates (AlcH and FlaH) showing antioxidant activities. This study evaluated the effects of AlcH and FlaH on gas production, ruminal fermentation characteristics, nutrient disappearance, microbial protein synthesis and microbial community using an artificial rumen system (RUSITEC) fed a high-grain diet. Results As compared to the control of grain only, supplementation of FlaH decreased (P < 0.01) disappearances of dry matter (DM), organic matter (OM), CP and starch, without affecting fibre disappearances; while AlcH had no effect on nutrient disappearance. Neither AlcH nor FlaH affected gas production or VFA profiles, however they increased (P < 0.01) NH3-N and decreased (P < 0.01) H2 production. Supplementation of FlaH decreased (P < 0.01) the percentage of CH4 in total gas and dissolved-CH4 (dCH4) in dissolved gas. Addition of monensin reduced (P < 0.01) disappearance of nutrients, improved fermentation efficiency and reduced CH4 and H2 emissions. Total microbial nitrogen production was decreased (P < 0.05) but the proportion of feed particle associated (FPA) bacteria was increased with FlaH and monensin supplementation. Numbers of OTUs and Shannon diversity indices of FPA microbial community were unaffected by AlcH and FlaH; whereas both indices were reduced (P < 0.05) by monensin. Taxonomic analysis revealed no effect of AlcH and FlaH on the relative abundance (RA) of bacteria at phylum level, whereas monensin reduced (P < 0.05) the RA of Firmicutes and Bacteroidetes and enhanced Proteobacteria. Supplementation of FlaH enhanced (P < 0.05) the RA of genus Prevotella, reduced Selenomonas, Shuttleworthia, Bifidobacterium and Dialister as compared to control; monensin reduced (P < 0.05) RA of genus Prevotella but enhaced Succinivibrio. Conclusions The supplementation of FlaH in high-grain diets may potentially protect CP and starch from ruminal degradation, without adversely affecting fibre degradation and VFA profiles. It also showed promising effects on reducing CH4 production by suppressing H2 production. Protein enzymatic hydrolysates from BSG using flavourzyme showed potential application to high value-added bio-products.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6186 ◽  
Author(s):  
Ting-Ting Jiang ◽  
Yan Liang ◽  
Xiang Zhou ◽  
Zi-Wei Shi ◽  
Zhi-Jun Xin

Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.


2021 ◽  
Vol 11 (2) ◽  
pp. 494
Author(s):  
Paola Ricciardi ◽  
Elisa Belloni ◽  
Francesca Merli ◽  
Cinzia Buratti

Recycled waste materials obtained from industrial and agricultural processes are becoming promising thermal and acoustic insulating solutions in building applications; their use can play an important role in the environmental impact reduction. The aim of the present paper is the evaluation of the thermal performance of recycled waste panels consisting of cork scraps, rice husk, coffee chaff, and end-life granulated tires, glued in different weight ratios and pressed. Six panels obtained from the mixing of these waste materials were fabricated and analyzed. In particular, the scope is the selection of the best compromise solutions from the thermal and environmental points of view. To this aim, thermal resistances were measured in laboratory and a Life Cycle Assessment (LCA) analysis was carried out for each panel; a cross-comparative examination was performed in order to optimize their properties and find the best panels solutions to be assembled in the future. Life Cycle Analysis was carried out in terms of primary Embodied Energy and Greenhouse Gas Emissions, considering a ‘‘cradle-to-gate” approach. The obtained thermal conductivities varied in the 0.055 to 0.135 W/mK range, in the same order of magnitude of many traditional systems. The best thermal results were obtained for the panels made of granulated cork, rice husk, and coffee chaff in this order. The rubber granulate showed higher values of the thermal conductivity (about 0.15 W/mK); a very interesting combined solution was the panel composed of cork (60%), rice husk (20%), and coffee chaff (20%), with a thermal conductivity of 0.08 W/mK and a Global Warming Potential of only 2.6 kg CO2eq/m2. Considering the Embodied Energy (CED), the best solution is a panel composed of 56% of cork and 44% of coffee chaff (minimum CED and thermal conductivity).


Author(s):  
Sidra Kiran ◽  
Javed Iqbal ◽  
Subhan Danish ◽  
Allah Baksh ◽  
Syed Inam Ullah Shah Bukhari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document