scholarly journals A Case of Colonic Micropapillary Carcinoma With a High Frequency of Apoptosis

Author(s):  
Kazumori Arai ◽  
Tomohiro Iwasaki ◽  
Hisato Ishimatsu ◽  
Chinatsu Tsuchiya ◽  
Aki Kubota ◽  
...  

Abstract Purpose: Colorectal micropapillary carcinoma (MPC) exhibits aggressive biological characteristics, with empty spaces and reversed polarity, similar to the poorly differentiated clusters (PDCs) formed from detached cancer cells. Epithelial–mesenchymal transition, which is involved in the cancer cell acquisition of apoptosis resistance, is closely linked with histological findings of MPC, PDCs, and tumor buds (TBs), with MPC and TBs considered as apoptosis-resistant features. However, we encountered a case of colonic MPC with frequent apoptosis.Methods: We examined the case using immunohistochemistry and compared it with two cases of conventional colonic cancer with high PDC and TB presence.Results: In many of the tumor glands (TGs) of the MPC, empty spaces and tumor cell detachment toward the gland interior were observed. Moreover, TG ruptures were scattered, with PDCs adjacent to them. Apoptosis occurred mainly at the TG and PDC peripheries in the middle and deep tumor layers, and transforming growth factor beta 1 (TGF-β1) positivity was evident in those tumor cells. Cells positive for apoptosis-related M30 were distributed mainly in the deep layer with a significant PDC and TB presence. However, apoptosis and M30 positivity were low in the TBs. In the control cases, apoptosis hardly occurred. Furthermore, M30 positivity in the TGs was scattered and barely evident in the PDCs. Aberrant β-catenin positivity was found. In MPC, non-tumorous bud components, especially those in the deep layer, had poor abilities to promptly acquire apoptosis resistance. Conclusion: Apoptosis has the potential to reciprocally produce MPC, PDCs, and TBs, with TGF-β1 involvement.

2018 ◽  
Author(s):  
Abdulaziz Asiri ◽  
Teresa Pereira Raposo ◽  
Abdulaziz Alfahed ◽  
Mohammad Ilyas

ABSTRACTCten is a tensin which promotes epithelial-mesenchymal transition (EMT) and cell motility. The precise mechanisms regulating Cten are unknown, although Cten could be regulated by several cytokines and growth factors. Since Transforming growth factor beta 1 (TGF-β1) regulates integrin function and promotes EMT / cell motility, we investigated whether this happens through Cten signalling in colorectal cancer (CRC).TGF-β1 signalling was modulated by either stimulation or knockdown in the CRC cell lines SW620 and HCT116. The effect of this modulation on expression of Cten, EMT markers and cellular function was tested. Cten role as a direct mediator of TGF-β1 signalling was investigated in a CRC cell line with a deleted Cten gene (SW620ΔCten).When TGF-β1 was stimulated or inhibited, this resulted in, respectively, upregulation and downregulation of Cten expression and EMT markers. Cell migration and invasion were significantly increased following TGF-β1 stimulation and lost by TGF-β1 knockdown. TGF-β1 stimulation in SW620ΔCten resulted in selective loss of the effect of TGF-β1 signalling on EMT and cell motility whilst the stimulatory effect on cell proliferation was retained.These data suggested Cten may play an essential role in mediating TGF-β1-induced EMT and cell motility and may play a role in metastasis in CRC.


Author(s):  
Jun-Jun Wei ◽  
Li Tang ◽  
Liang-Liang Chen ◽  
Zhen-Hua Xie ◽  
Yu Ren ◽  
...  

Background: Mesenchymal stem cells (MSCs) have recently shown promise for the treatment of various types of chronic kidney disease models. However, the mechanism of this effect is still not well understood. Our study is aimed to investigate the effect of MSCs on transforming growth factor beta 1 (TGF-β1)-induced epithelial mesenchymal transition (EMT) in renal tubular epithelial cells (HK-2 cells) and the underlying mechanism related to the reciprocal balance between hepatocyte growth factor (HGF) and TGF-β1. Methods: Our study was performed at Ningbo University, Ningbo, Zhejiang, China between Mar 2017 and Jun 2018. HK-2 cells were initially treated with TGF-β1,then co-cultured with MSCs. The induced EMT was assessed by cellular morphology and the expressions of alpha-smooth muscle actin (α-SMA) and EMT-related proteins. MTS assay and flow cytometry were employed to detect the effect of TGF-β1 and MSCs on HK-2 cell proliferation and apoptosis. SiRNA against hepatocyte growth factor (siHGF) was transfected to decrease the expression of HGF to identify the role of HGF in MSCs inhibiting HK-2 cells EMT. Results: Overexpressing TGF-β1 decreased HGF expression, induced EMT, suppressed proliferation and promoted apoptosis in HK-2 cells; but when co-cultured with MSCs all the outcomes were reversed. However, after treated with siHGF, all the benefits taken from MSCs vanished. Conclusion: TGF-β1 was a motivating factor of kidney cell EMT and it suppressed the HGF expression. However, MSCs provided protection against EMT by increasing HGF level and decreasing TGF-β1 level. Our results also demonstrated HGF is one of the critical factor in MSCs anti- fibrosis.  


2006 ◽  
Vol 17 (4) ◽  
pp. 1871-1879 ◽  
Author(s):  
Damian Medici ◽  
Elizabeth D. Hay ◽  
Daniel A. Goodenough

Transforming growth factor beta 1 (TGF-β1) has been shown to induce epithelial-mesenchymal transition (EMT) during various stages of embryogenesis and progressive disease. This alteration in cellular morphology is typically characterized by changes in cell polarity and loss of adhesion proteins such as E-cadherin. Here we demonstrate that EMT is associated with loss of claudin-1, claudin-2, occludin, and E-cadherin expression within 72 h of exposure to TGF-β1 in MDCKII cells. It has been suggested that this expression loss occurs through TGF-β1 in a Smad-independent mechanism, involving MEK and PI3K pathways, which have previously been shown to induce expression of the Snail (SNAI-1) gene. Here we show that these pathways are responsible for loss of tight junctions and a partial loss of E-cadherin. However, our results also demonstrate that a complete loss of E-cadherin and transformation to the mesenchymal phenotype are dependent on Smad signaling, which subsequently stimulates formation of β-catenin/LEF-1 complexes that induce EMT.


2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199651
Author(s):  
Jie Yang ◽  
Enzi Feng ◽  
Yanxin Ren ◽  
Shun Qiu ◽  
Liufang Zhao ◽  
...  

Objectives To identify key long non-coding (lnc)RNAs responsible for the epithelial–mesenchymal transition (EMT) of CNE1 nasopharyngeal carcinoma cells and to investigate possible regulatory mechanisms in EMT. Methods CNE1 cells were divided into transforming growth factor (TGF)-β1-induced EMT and control groups. The mRNA and protein expression of EMT markers was determined by real-time quantitative PCR and western blotting. Differentially expressed genes (DEGs) between the two groups were identified by RNA sequencing analysis, and DEG functions were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. EMT marker expression was re-evaluated by western blotting after knockdown of a selected lncRNA. Results TGF-β1-induced EMT was characterized by decreased E-cadherin and increased vimentin, N-cadherin, and Twist expression at both mRNA and protein levels. Sixty lncRNA genes were clustered in a heatmap, and mRNA expression of 14 dysregulated lncRNAs was consistent with RNA sequencing. Knockdown of lnc-PNRC2-1 increased expression of its antisense gene MYOM3 and reduced expression of EMT markers, resembling treatment with the TGF-β1 receptor inhibitor LY2109761. Conclusion Various lncRNAs participated indirectly in the TGF-β1-induced EMT of CNE1 cells. Lnc-PNRC2-1 may be a key regulator of this and is a potential target to alleviate CNE1 cell EMT.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2883 ◽  
Author(s):  
Keiko Takagi ◽  
Yutaka Midorikawa ◽  
Tadatoshi Takayama ◽  
Hayato Abe ◽  
Kyoko Fujiwara ◽  
...  

Synthetic pyrrole-imidazole (PI) polyamides bind to the minor groove of double-helical DNA with high affinity and specificity, and inhibit the transcription of corresponding genes. In liver cancer, transforming growth factor (TGF)-β expression is correlated with tumor grade, and high-grade liver cancer tissues express epithelial-mesenchymal transition markers. TGF-β1 was reported to be involved in cancer development by transforming precancer cells to cancer stem cells (CSCs). This study aimed to evaluate the effects of TGF-β1-targeting PI polyamide on the growth of liver cancer cells and CSCs and their TGF-β1 expression. We analyzed TGF-β1 expression level after the administration of GB1101, a PI polyamide that targets human TGF-β1 promoter, and examined its effects on cell proliferation, invasiveness, and TGF-β1 mRNA expression level. GB1101 treatment dose-dependently decreased TGF-β1 mRNA levels in HepG2 and HLF cells, and inhibited HepG2 colony formation associated with downregulation of TGF-β1 mRNA. Although GB1101 did not substantially inhibit the proliferation of HepG2 cells compared to untreated control cells, GB1101 significantly suppressed the invasion of HLF cells, which displayed high expression of CD44, a marker for CSCs. Furthermore, GB1101 significantly inhibited HLF cell sphere formation by inhibiting TGF-β1 expression, in addition to suppressing the proliferation of HLE and HLF cells. Taken together, GB1101 reduced TGF-β1 expression in liver cancer cells and suppressed cell invasion; therefore, GB1101 is a novel candidate drug for the treatment of liver cancer.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 348 ◽  
Author(s):  
Ravindran ◽  
Pasha ◽  
Agouni ◽  
Munusamy

Diabetic nephropathy (DN) is the most common cause of chronic kidney disease worldwide. Activation of signaling pathways such as the mammalian target of rapamycin (mTOR), extracellular signal-regulated kinases (ERK), endoplasmic reticulum (ER) stress, transforming growth factor-beta (TGF-β), and epithelial-mesenchymal transition (EMT), are thought to play a significant role in the etiology of DN. Microparticles (MPs), the small membrane vesicles containing bioactive signals shed by cells upon activation or during apoptosis, are elevated in diabetes and were identified as biomarkers in DN. However, their exact role in the pathophysiology of DN remains unclear. Here, we examined the effect of MPs shed from renal proximal tubular cells (RPTCs) exposed to high glucose conditions on naïve RPTCs in vitro. Our results showed significant increases in the levels of phosphorylated forms of 4E-binding protein 1 and ERK1/2 (the downstream targets of mTOR and ERK pathways), phosphorylated-eIF2α (an ER stress marker), alpha smooth muscle actin (an EMT marker), and phosphorylated-SMAD2 and nuclear translocation of SMAD4 (markers of TGF-β signaling). Together, our findings indicate that MPs activate key signaling pathways in RPTCs under high glucose conditions. Pharmacological interventions to inhibit shedding of MPs from RPTCs might serve as an effective strategy to prevent the progression of DN.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1621
Author(s):  
Azadeh Nilchian ◽  
Nikolina Giotopoulou ◽  
Wenwen Sun ◽  
Jonas Fuxe

Transforming growth factor beta 1 (TGF-β1) is associated with epithelial-mesenchymal transition (EMT), lymph metastasis, and poor prognosis in breast cancer. Paradoxically, TGF-β1 is also a potent inhibitor of cell proliferation. TGF-β1-induced EMT involves activation of several pathways including AKT, which also regulates glucose uptake. Recent data show that prolonged TGF-β1 exposure leads to a more stable EMT phenotype in breast cancer cells. However, whether this is linked to changes in glucose metabolism is not clear. Here, we used a model of TGF-β1-induced EMT in mammary epithelial cells to study the regulation of Glut1 and EMT markers during the induction compared to a prolonged phase of EMT by western blot, immunofluorescence and qPCR analysis. We also measured cell proliferation and uptake of the glucose analogue 2-NDBG. We found that EMT induction was associated with decreased Glut1 expression and glucose uptake. These effects were linked to reduced cell proliferation rather than EMT. Knockdown of Glut1 resulted in growth inhibition and less induction of vimentin during TGF-β1-induced EMT. Intriguingly, Glut1 levels, glucose uptake and cell proliferation were restored during prolonged EMT. The results link Glut1 repression to the anti-proliferative response of TGF-β1 and indicate that re-expression of Glut1 during chronic TGF-β1 exposure allows breast cancer cells to develop stable EMT and proliferate, in parallel.


Sign in / Sign up

Export Citation Format

Share Document