scholarly journals Microstructural Evolution and Hardness of Rapidly Solidified Hypereutectic Al-Si Surface Layers Produced by Laser Remelting

Author(s):  
Jaafar Abboud ◽  
Metin Kayitmazbatir ◽  
Amit Misra ◽  
Jyoti Mazumder

Abstract A laser rapid solidification technique was employed to remelt and refine the microstructure of Al-25wt.%Si and Al-30wt.%Si alloyed layers produced by laser melting. The microstructure of the as-fabricated Al-Si layers consisted of irregular polygonal primary Si crystals of size 5 to 7 µm, fine α-Al dendrites, and Al-Si eutectic. Laser rapid remelting results showed a significant refinement of all the solidified phases with increasing scan speed and decreasing laser power. At the lowest laser power (800W), the sizes of the primary Si crystals were reduced to a sub-micron level and an interwoven network of nano-sized eutectic colonies was obtained. The higher cooling rates, resulted in a reduction in the amount of the α-Al phase especially those surrounding the primary Si, thereby stimulating the eutectic Si fibers to grow from the pre-existing primary Si crystals and increased the proportion of the fibrous eutectic. Transmission electron microscopy revealed fibrous eutectic, which was internally nano-twinned, with a diameter approaching as low as 10-15 nm for the highest cooling rate. The hardness measured by nanoindentation of the eutectic in the remelted Al-25wt.%Si layer increased with decreasing the eutectic spacing (ʎ) reaching a maximum value of 3.15GPa.

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2150 ◽  
Author(s):  
Su-Seong Ahn ◽  
Sharief Pathan ◽  
Jar-Myung Koo ◽  
Chang-Hyun Baeg ◽  
Chan-Uk Jeong ◽  
...  

In this research, various processing conditions were implemented to enhance the mechanical properties of Al-Si alloys. The silicon content was varied from hypoeutectic (Si-10 wt.%) to eutectic (Si-12.6 wt.%) and hypereutectic (Si-14 wt.%) for the preparation of Al-XSi-3Cu-0.5Fe-0.6 Mg (X = 10–14%) alloys using die casting. Subsequently, these alloys were hot-extruded with an optimum extrusion ratio (17:1) at 400 °C to match the output extruded bar to the compressor size. An analysis of the microstructural features along with a chemical compositional analysis were carried out using scanning electron microscope along with energy dispersive X-ray spectroscopy and transmission electron microscope. The SEM micrographs of the extruded samples displayed cracks in primary Si, and the intermetallic (β-Al5FeSi) phase was fragmented accordingly. In addition, the silicon phase was homogenously distributed, and the size remained constant. The mechanical properties of the extruded samples were enhanced by the increase of silicon content, and consequently the ductility decreased. By implementing proper T6 heat treatment parameters, coherent Al2Cu phases were formed in the Al matrix, and the Si phase was gradually increased along with the silicon content. Therefore, high tensile strength was achieved, reaching values for the Al-XSi-3Cu-0.5Fe-0.6Mg (X = 10–14%) alloys of 366 MPa, 388 MPa, and 420 MPa, respectively.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3505 ◽  
Author(s):  
Feng Mao ◽  
Shizhong Wei ◽  
Liming Ou ◽  
Cheng Zhang ◽  
Chong Chen ◽  
...  

The effect of alloying the Eu element on primary Si refinement in varied purity Al–16Si alloys was studied by scanning electron microscopy (SEM), thermal analysis, micro x–ray diffraction (μ–XRD), electron probe microanalysis (EPMA), and transmission electron microscopy (TEM). The results indicate that the P impurity element in hypereutectic Al–Si alloys has a great influence on the rare earths’ refinement efficiency of primary Si. Coinstantaneous primary Si refinement and eutectic Si modification by Eu was obtained in high purity (HP) Al–16Si and commercial purity (CP) Al–16Si–0.06P alloys, but the primary Si was gradually coarsened in CP Al–16Si alloys. An excellent integration of ultimate tensile strength (144.8 MPa) and elongation (9.8%) of CP hypereutectic Al–16Si–0.06P alloy was obtained by adding 0.15% Eu. The refinement of primary Si in Eu–modified HP Al–16Si alloys was related to the constitutional undercooling of Eu. There was no sufficient Eu element partition into the primary Si particles, and fewer parallel twins, rather than multiple twins, were observed within them. The refinement of primary Si in CP Al–16Si–0.06P alloys was caused by the overlay of two kinds of mechanisms including the heterogeneous nucleation mechanism of AlP and the constitutional supercooling mechanism of Eu. However, in order to refine the primary Si in CP hypereutectic Al–16Si alloys, the Eu:P weight ratio should not exceed 3.33, otherwise the refinement efficiency of primary Si will be reduced due to mutual poisoning between Eu and P. This work can be used to interpret the controversy concerning the influence of rare earths on the primary Si in hypereutectic Al–Si alloys, thereby elucidating the importance of alloy purity to primary Si refinement by rare earths.


2015 ◽  
Vol 817 ◽  
pp. 173-179 ◽  
Author(s):  
Xue Kong ◽  
Bi Cheng Yang ◽  
Zhi Feng Zhang ◽  
Jun Xu

The effect of reheating process on the microstructure and mechanical property of A390 aluminum alloy and its evolution mechanism was studied. During reheating process, the microstructure of A390 ingots changed greatly, the microstructure ofα-Al particles changed from dendrite to spherical. As the reheating temperature increased primary Si and eutectic Si gradually grew up and spheroidized while the mechanical properties got the maximum value as the ingot reheating to 540°C. The relationship the between reheating power and microstructure was built. Improving reheating power can restrain the growth of grains, but if the reheating power was too high, the microstructure becomes non-uniform. It has been found that reheating of A390 aluminum alloy experiences two processes of grain combination and Ostwald growing.


2012 ◽  
Vol 729 ◽  
pp. 272-277
Author(s):  
Mária Svéda ◽  
Dóra Janovszky ◽  
K. Tomolya ◽  
J. Sólyom ◽  
G. Buza ◽  
...  

This paper reports laser remelting of crystalline Cu based alloys in order to produce amorphous layer on the surface. The as prepared Cu based master alloy ingots were imbedded in a metallic sinking with Wood metal to assure the good thermal conductivity during the laser treatment. The laser remelting of a thin surface layer and a subsequent rapid cooling of it was performed using impulse and continuous mode of Nd:YAG laser. In respectively the impulse mode the laser power and the interaction time were 1.5; 2 kW and 20÷100 ms. In the continuous mode the laser power was 2 kW, and the laser scan speed was 80÷120 mm/s. The characterization of the microstructure of surface layer was performed by XRD, scanning electron microscopy and microhardness measurements.


2014 ◽  
Vol 217-218 ◽  
pp. 37-44 ◽  
Author(s):  
Ye Hua Jiang ◽  
Lu Li ◽  
Rong Zhou ◽  
Rong Feng Zhou ◽  
Jia Wang

Hypereutectic Al-Si alloys have low thermal expansion coefficients, excellent wear resistance, and high hardness. To replace cast iron with hypereutectic Al-Si alloys, the hypereutectic Al-Si alloys must still have the originally desired mechanical properties. The addition of Fe and Mn to the hypereutectic Al-Si alloys can form Fe-rich phases, which can improve thermal stability. In this paper, the effect of manganese (0 %, 0.99 %, and 1.36 %) on the Fe-rich phases of hypereutectic Al-22Si-2Fe (% w/w) alloys was studied. The results showed that primary Si particles (PSPs), needle-like Fe phases, a coarser fishbone-shaped α-Al15(Fe, Mn)3Si2 phases, and eutectic Si could be refined by cooling slope. With such a CS process, the intermetallic compounds in the alloys with different Mn/Fe ratios were examined with an optical microscope, scanning electron microscope, and X-ray diffraction. Moreover, the blocky α-Al15(Fe, Mn)3Si2 phases were analyzed by transmission electron microscopy. Through the analysis of the SADP, the lattice structures of α-Al15(Fe, Mn)3Si2 phases were identified with tetragonal structure and body centre cubic.


Author(s):  
G. A. Bertero ◽  
W.H. Hofmeister ◽  
N.D. Evans ◽  
J.E. Wittig ◽  
R.J. Bayuzick

Rapid solidification of Ni-Nb alloys promotes the formation of amorphous structure. Preliminary results indicate promising elastic properties and high fracture strength for the metallic glass. Knowledge of the thermal stability of the amorphus alloy and the changes in properties with temperature is therefore of prime importance. In this work rapidly solidified Ni-Nb alloys were analyzed with transmission electron microscopy (TEM) during in-situ heating experiments and after isothermal annealing of bulk samples. Differential thermal analysis (DTA), scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were also used to characterize both the solidification and devitrification sequences.Samples of Ni-44 at.% Nb were electromagnetically levitated, melted, and rapidly solidified by splatquenching between two copper chill plates. The resulting samples were 100 to 200 μm thick discs of 2 to 3 cm diameter. TEM specimens were either ion-milled or alternatively electropolished in a methanol-10% sulphuric acid solution at 20 V and −40°C.


Author(s):  
J. E. O’Neal ◽  
K. K. Sankaran ◽  
S. M. L. Sastry

Rapid solidification of a molten, multicomponent alloy against a metallic substrate promotes greater microstructural homogeneity and greater solid solubility of alloying elements than can be achieved by slower-cooling casting methods. The supersaturated solid solutions produced by rapid solidification can be subsequently annealed to precipitate, by controlled phase decomposition, uniform 10-100 nm precipitates or dispersoids. TEM studies were made of the precipitation of metastable Al3Li(δ’) and equilibrium AL3H phases and the deformation characteristics of a rapidly solidified Al-3Li-0.2Ti alloy.


1989 ◽  
Vol 4 (1) ◽  
pp. 44-49 ◽  
Author(s):  
S. A. Myers ◽  
C. C. Koch

There is controversy in the literature regarding the existence of the metastable γ′ phase with an ordered Ll2 structure in rapidly solidified Fe–Ni–Al–C alloys. In this study, the quench rate–metastable structure dependence was examined in the Fe–20Ni–8Al–2C (weight percent) alloy. The effect of silicon on the kinetics of phase formation was studied by adding two weight percent silicon to a base alloy of Fe–20Ni–8Al–2C. Samples were rapidly solidified in an arc hammer apparatus and examined by transmission electron microscopy. In the Fe–20Ni–8Al–2C alloy, the nonequilibrium γ′ and γ phases were found in foils 65 to 100 μm thick. At higher quench rates, i.e., thinner samples, the matrix was observed to be disordered fcc γ with K-carbide precipitates. Samples containing silicon were found to have a matrix composed of γ′ and γ structures when the foils were thicker than 40 μm. At higher quench rates, the matrix was disordered fcc γ with K-carbide precipitates. The nonequilibrium γ′ and γ structures are present in samples with or without silicon, but are observed at higher cooling rates with the addition of silicon. This sensitivity to cooling rate and composition in resulting metastable structures may explain the differences reported in the literature for these rapidly solidified materials.


1981 ◽  
Vol 4 ◽  
Author(s):  
J. Narayan ◽  
G. L. Olson ◽  
O. W. Holland

ABSTRACTTime-resolved-reflectivity measurements have been combined with transmission electron microscopy (cross-section and plan-view), Rutherford backscattering and ion channeling techniques to study the details of laser induced solid phase epitaxial growth in In+ and Sb+ implanted silicon in the temperature range from 725 to 1500 °K. The details of microstructures including the formation of polycrystals, precipitates, and dislocations have been correlated with the dynamics of crystallization. There were limits to the dopant concentrations which could be incorporated into substitutional lattice sites; these concentrations exceeded retrograde solubility limits by factors up to 70 in the case of the Si-In system. The coarsening of dislocation loops and the formation of a/2<110>, 90° dislocations in the underlying dislocation-loop bands are described as a function of laser power.


Sign in / Sign up

Export Citation Format

Share Document