Effect of Reheating Process on Microstructure and Mechanical Property of A390 Aluminum Alloy

2015 ◽  
Vol 817 ◽  
pp. 173-179 ◽  
Author(s):  
Xue Kong ◽  
Bi Cheng Yang ◽  
Zhi Feng Zhang ◽  
Jun Xu

The effect of reheating process on the microstructure and mechanical property of A390 aluminum alloy and its evolution mechanism was studied. During reheating process, the microstructure of A390 ingots changed greatly, the microstructure ofα-Al particles changed from dendrite to spherical. As the reheating temperature increased primary Si and eutectic Si gradually grew up and spheroidized while the mechanical properties got the maximum value as the ingot reheating to 540°C. The relationship the between reheating power and microstructure was built. Improving reheating power can restrain the growth of grains, but if the reheating power was too high, the microstructure becomes non-uniform. It has been found that reheating of A390 aluminum alloy experiences two processes of grain combination and Ostwald growing.

2013 ◽  
Vol 770 ◽  
pp. 308-311 ◽  
Author(s):  
Ming Dong Yi ◽  
Chong Hai Xu ◽  
Zhao Qiang Chen ◽  
Guang Yong Wu

A new nanomicro composite self-lubricating ceramic tool material was prepared with vacuum hot pressing technique. The effect of nanoAl2O3 powders on the microstructure and mechanical properties of nanomicro composite self-lubricating ceramic tool material was investigated. With the increase of nanoAl2O3 content, the hardness and fracture toughness first up then down. When the nanoAl2O3 content is 4 vol.%, the flexural strength, hardness and fracture toughness reaches 562 MPa, 8.46 MPa·m1/2 and 18.95 GPa, respectively. The microstructure and mechanical property of nanomicro composite self-lubricating ceramic tool material can be improved by the grain refinement strengthening of nanoAl2O3.


2016 ◽  
Vol 850 ◽  
pp. 671-678
Author(s):  
Jian Wei Niu ◽  
Lie Jun Li ◽  
Hai Jun Liu ◽  
Ji Xiang Gao ◽  
Chuan Dong Ren

The inoculation and fading behavior of Sr-modified aluminum alloy A356. 2 were studied for air bag bracket produced by squeeze casting. The effects of Sr, P, B contents and casting temperature on the microstructure and eutectic silicon morphology in different periods of inoculation were investigated by SEM and direct-reading Spectrometer. The influence of inoculation fading rate and addition of Sr on the casting mechanical properties and hydrogen absorption was studied. The experimental results showed that the inoculation process was completed in 1 h, and the eutectic silicon morphology can be maintained in almost subsequent 40 h after the addition of Sr. The fading rate decreased appreciably with the increase of casing temperature, P and B contents. The deleterious effect of the inoculation fading of Sr on the casting mechanical property can be compensated by the squeeze casting.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2150 ◽  
Author(s):  
Su-Seong Ahn ◽  
Sharief Pathan ◽  
Jar-Myung Koo ◽  
Chang-Hyun Baeg ◽  
Chan-Uk Jeong ◽  
...  

In this research, various processing conditions were implemented to enhance the mechanical properties of Al-Si alloys. The silicon content was varied from hypoeutectic (Si-10 wt.%) to eutectic (Si-12.6 wt.%) and hypereutectic (Si-14 wt.%) for the preparation of Al-XSi-3Cu-0.5Fe-0.6 Mg (X = 10–14%) alloys using die casting. Subsequently, these alloys were hot-extruded with an optimum extrusion ratio (17:1) at 400 °C to match the output extruded bar to the compressor size. An analysis of the microstructural features along with a chemical compositional analysis were carried out using scanning electron microscope along with energy dispersive X-ray spectroscopy and transmission electron microscope. The SEM micrographs of the extruded samples displayed cracks in primary Si, and the intermetallic (β-Al5FeSi) phase was fragmented accordingly. In addition, the silicon phase was homogenously distributed, and the size remained constant. The mechanical properties of the extruded samples were enhanced by the increase of silicon content, and consequently the ductility decreased. By implementing proper T6 heat treatment parameters, coherent Al2Cu phases were formed in the Al matrix, and the Si phase was gradually increased along with the silicon content. Therefore, high tensile strength was achieved, reaching values for the Al-XSi-3Cu-0.5Fe-0.6Mg (X = 10–14%) alloys of 366 MPa, 388 MPa, and 420 MPa, respectively.


2016 ◽  
Vol 43 (12) ◽  
pp. 1202009
Author(s):  
钦兰云 Qin Lanyun ◽  
庞爽 Pang Shuang ◽  
杨光 Yang Guang ◽  
王超 Wang Chao ◽  
王维 Wang Wei

Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Peng Tang ◽  
Yiyuan Liu ◽  
Yanjun Zhao ◽  
Zhiliu Hu ◽  
Huachun Wang ◽  
...  

In this paper, the effect of Er addition (0.2, 0.5, 0.65, 0.8, 1.0, and 1.5 wt. %) on the microstructure evolution and tensile properties of as-cast hypereutectic Al-10Si-0.8Fe alloy was investigated. The phases and their morphologies in these alloys were identified by XRD and SEM equipped with EDX with the help of metallographic analysis techniques; the length of the secondary phase (LSP) and secondary dendrite arm spacing (SDAS) of α-Al grain were quantified. The results indicated that the second phases (primary Si, eutectic Si, and iron-rich phases) and α-Al grain were significantly refined when the addition of Er increased from 0 to 0.8 wt. %. The mean LSP and SADS values were decreased to a minimum value when the Er addition reached 0.8 wt. %. However, the second phases and α-Al grain became coarser when the level of Er increased more than 0.8 wt. %. The analysis of XRD shows that Er mainly exists in the form of Er2Si compound. The microstructure modification also has a significant effect on the mechanical properties of the alloy. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) increase from 52.86 MPa, 163.84 MPa, and 3.45% to 71.01 MPa, 163.84 MPa, and 5.65%, respectively. From the fracture surface, the promotions of mechanical properties are due to the dispersion and pinning reinforcement caused by the Er2Si phase.


2010 ◽  
Vol 152-153 ◽  
pp. 1151-1155 ◽  
Author(s):  
Xu Chang Li ◽  
Jian Jiao ◽  
Jun Yan Yao ◽  
Liang Wang

By means of a tensile instrument and SEM, the mechanical property parameters of HTPB propellant test samples with different formulas were tested, and their microscopic fracture cross section patterns were observed. Take advantage of these testing results, the relationship between microscopic structure and mechanical properties of HTPB propellant was studied. The results show that the mechanical properties of a propellant are closely related to its microscpic structure state. The structural integrity of propellant is mainly influenced by the bond effect of the interface between binder and solid particles, solid particle’s shape, size and its distribution, the content of binder matrix, etc. These factors have important effects on the mechanical properties of propellant.


2018 ◽  
Vol 9 (1) ◽  
pp. 53 ◽  
Author(s):  
Jianlong Liu ◽  
Qingjie Wu ◽  
Hong Yan ◽  
Songgen Zhong ◽  
Zhixiang Huang

The effects of rare earth yttrium (Y) additions and the heat treatment process on the microstructure and mechanical properties of as-cast ADC12 aluminum alloy have been investigated. The results showed that the primary Si crystals were significantly refined from long axis to fibrous or granular when the Y content was 0.2 wt%. Compared to the matrix, the mean area and aspect ratio were decreased by 92% and 75%, respectively. Moreover, the Si and Fe-rich phases were spheroidized and refined with a small average size during the solid solution. It was also noted that the copper-rich phases were dissolved into the matrix. Correspondingly, it was found that after metamorphic and heat treatment the ultimate tensile strength (UTS), elongation, and, hardness increased by 81.9%, 69.7%, and 74.8%, respectively, compared to the matrix. The improved mechanical properties can primarily be attributed to the optimization of the microstructure and the refinement of various phases.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 629
Author(s):  
Anagh Deshpande ◽  
Subrata Deb Nath ◽  
Sundar Atre ◽  
Keng Hsu

Selective laser melting (SLM) is one of the most widely used additive manufacturing technologies. Fabricating nickel-based superalloys with SLM has garnered significant interest from the industry and the research community alike due to the excellent high temperature properties and thermal stability exhibited by the alloys. Haynes-282 alloy, a γ′-phase strengthened Ni-based superalloy, has shown good high temperature mechanical properties comparable to alloys like R-41, Waspaloy, and 263 alloy but with better fabricability. A study and comparison of the effect of different heat-treatment routes on microstructure and mechanical property evolution of Haynes-282 fabricated with SLM is lacking in the literature. Hence, in this manuscript, a thorough investigation of microstructure and mechanical properties after a three-step heat treatment and hot isostatic pressing (HIP) has been conducted. In-situ heat-treatment experiments were conducted in a transmission electron microscopy (TEM) to study γ′ precipitate evolution. γ′ precipitation was found to start at 950 °C during in-situ heat-treatment. Insights from the in-situ heat-treatment were used to decide the aging heat-treatment for the alloy. The three-step heat-treatment was found to increase yield strength (YS) and ultimate tensile strength (UTS). HIP process enabled γ′ precipitation and recrystallization of grains of the as-printed samples in one single step.


Sign in / Sign up

Export Citation Format

Share Document