Effect of Manganese on the Fe-Rich Phases in Al-22Si-2Fe Alloy by Cooling Slope

2014 ◽  
Vol 217-218 ◽  
pp. 37-44 ◽  
Author(s):  
Ye Hua Jiang ◽  
Lu Li ◽  
Rong Zhou ◽  
Rong Feng Zhou ◽  
Jia Wang

Hypereutectic Al-Si alloys have low thermal expansion coefficients, excellent wear resistance, and high hardness. To replace cast iron with hypereutectic Al-Si alloys, the hypereutectic Al-Si alloys must still have the originally desired mechanical properties. The addition of Fe and Mn to the hypereutectic Al-Si alloys can form Fe-rich phases, which can improve thermal stability. In this paper, the effect of manganese (0 %, 0.99 %, and 1.36 %) on the Fe-rich phases of hypereutectic Al-22Si-2Fe (% w/w) alloys was studied. The results showed that primary Si particles (PSPs), needle-like Fe phases, a coarser fishbone-shaped α-Al15(Fe, Mn)3Si2 phases, and eutectic Si could be refined by cooling slope. With such a CS process, the intermetallic compounds in the alloys with different Mn/Fe ratios were examined with an optical microscope, scanning electron microscope, and X-ray diffraction. Moreover, the blocky α-Al15(Fe, Mn)3Si2 phases were analyzed by transmission electron microscopy. Through the analysis of the SADP, the lattice structures of α-Al15(Fe, Mn)3Si2 phases were identified with tetragonal structure and body centre cubic.

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3505 ◽  
Author(s):  
Feng Mao ◽  
Shizhong Wei ◽  
Liming Ou ◽  
Cheng Zhang ◽  
Chong Chen ◽  
...  

The effect of alloying the Eu element on primary Si refinement in varied purity Al–16Si alloys was studied by scanning electron microscopy (SEM), thermal analysis, micro x–ray diffraction (μ–XRD), electron probe microanalysis (EPMA), and transmission electron microscopy (TEM). The results indicate that the P impurity element in hypereutectic Al–Si alloys has a great influence on the rare earths’ refinement efficiency of primary Si. Coinstantaneous primary Si refinement and eutectic Si modification by Eu was obtained in high purity (HP) Al–16Si and commercial purity (CP) Al–16Si–0.06P alloys, but the primary Si was gradually coarsened in CP Al–16Si alloys. An excellent integration of ultimate tensile strength (144.8 MPa) and elongation (9.8%) of CP hypereutectic Al–16Si–0.06P alloy was obtained by adding 0.15% Eu. The refinement of primary Si in Eu–modified HP Al–16Si alloys was related to the constitutional undercooling of Eu. There was no sufficient Eu element partition into the primary Si particles, and fewer parallel twins, rather than multiple twins, were observed within them. The refinement of primary Si in CP Al–16Si–0.06P alloys was caused by the overlay of two kinds of mechanisms including the heterogeneous nucleation mechanism of AlP and the constitutional supercooling mechanism of Eu. However, in order to refine the primary Si in CP hypereutectic Al–16Si alloys, the Eu:P weight ratio should not exceed 3.33, otherwise the refinement efficiency of primary Si will be reduced due to mutual poisoning between Eu and P. This work can be used to interpret the controversy concerning the influence of rare earths on the primary Si in hypereutectic Al–Si alloys, thereby elucidating the importance of alloy purity to primary Si refinement by rare earths.


2017 ◽  
Vol 373 ◽  
pp. 146-149
Author(s):  
Wen Deng ◽  
Li Xia Li ◽  
Shou Lei Xu ◽  
Wen Chun Zhang ◽  
Yu Yang Huang ◽  
...  

The microdefects, the thermal expansion coefficients and the magnetization -temperature curves of the Fe64Ni36-xCox (x=1~10) were characterized by means of positron lifetime, X-ray diffraction, Michelson's interferometer and VSM modular on PPMS, respectively. The Fe64Ni30Co6 alloy is a mixture of BCC and FCC structures. With the Co content increasing in Fe64Ni36-xCox alloys, the BCC phase increases, while the FCC phase decreases. In comparison with other Fe64Ni36-xCox alloys, the Fe64Ni31Co5 alloy has a rather high magnetization at temperature lower than Tc, a relatively large change of the magnetization with the temperature near Tc, and a rather low thermal expansion coefficient.


1995 ◽  
Vol 397 ◽  
Author(s):  
Yoshihiko Shibata ◽  
Naohiro Kuze ◽  
Masahiro Matsui ◽  
Masaki Kanai ◽  
Tomoji Kawai

ABSTRACTThin LiNbO3 films are deposited on (001) sapphire substrates by Ar F pulsed laser ablation. The films are evaluated by X-ray diffraction analysis at various temperatures, as well as high-resolution transmission electron microscopy (TEM). The deposited films are highly epitaxial but that are strained, that is, the a-axis is longer and the c-axis is shorter than those of LiNbO3 single crystals. X-ray diffraction analysis at deposition temperature, as well as TEM show that the strain is caused by the difference in thermal expansion coefficients between LiNbO3 and sapphire substrates.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2332
Author(s):  
Ahmad Mamoun Khamis ◽  
Zulkifly Abbas ◽  
Raba’ah Syahidah Azis ◽  
Ebenezer Ekow Mensah ◽  
Ibrahim Abubakar Alhaji

The purpose of this study was to improve the dielectric, magnetic, and thermal properties of polytetrafluoroethylene (PTFE) composites using recycled Fe2O3 (rFe2O3) nanofiller. Hematite (Fe2O3) was recycled from mill scale waste and the particle size was reduced to 11.3 nm after 6 h of high-energy ball milling. Different compositions (5–25 wt %) of rFe2O3 nanoparticles were incorporated as a filler in the PTFE matrix through a hydraulic pressing and sintering method in order to fabricate rFe2O3–PTFE nanocomposites. The microstructure properties of rFe2O3 nanoparticles and the nanocomposites were characterized through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The thermal expansion coefficients (CTEs) of the PTFE matrix and nanocomposites were determined using a dilatometer apparatus. The complex permittivity and permeability were measured using rectangular waveguide connected to vector network analyzer (VNA) in the frequency range 8.2–12.4 GHz. The CTE of PTFE matrix decreased from 65.28×10−6/°C to 39.84×10−6/°C when the filler loading increased to 25 wt %. The real (ε′) and imaginary (ε″) parts of permittivity increased with the rFe2O3 loading and reached maximum values of 3.1 and 0.23 at 8 GHz when the filler loading was increased from 5 to 25 wt %. A maximum complex permeability of 1.1−j0.07 was also achieved by 25 wt % nanocomposite at 10 GHz.


2011 ◽  
Vol 23 (7) ◽  
pp. 526-534 ◽  
Author(s):  
Yang Wang ◽  
Boming Zhang ◽  
Jinrui Ye

Hybrid nanocomposites were successfully prepared by the incorporation of polyethersulfone (PES) and organoclay into epoxy resin. They had higher fracture toughness than the prepared PES/epoxy blend and organoclay/epoxy nanocomposites. The microstructures of the hybrid nanocomposites were studied. They were comprised of homogeneous PES/epoxy semi-interpenetrating network (semi-IPN) matrices and organoclay micro-agglomerates made up of tactoid-like regions composed of ordered exfoliated organoclay with various orientations. The former was confirmed with dynamic mechanical analysis, scanning electron microscopy and transmission electron microscopy, while the latter was successfully observed with X-ray diffraction measurements, optical microscope, scanning electron microscope and transmission electron microscope. The improvement of their fracture toughness was due to the synergistic toughening effect of the PES and the organoclay and related to their microstructures.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2150 ◽  
Author(s):  
Su-Seong Ahn ◽  
Sharief Pathan ◽  
Jar-Myung Koo ◽  
Chang-Hyun Baeg ◽  
Chan-Uk Jeong ◽  
...  

In this research, various processing conditions were implemented to enhance the mechanical properties of Al-Si alloys. The silicon content was varied from hypoeutectic (Si-10 wt.%) to eutectic (Si-12.6 wt.%) and hypereutectic (Si-14 wt.%) for the preparation of Al-XSi-3Cu-0.5Fe-0.6 Mg (X = 10–14%) alloys using die casting. Subsequently, these alloys were hot-extruded with an optimum extrusion ratio (17:1) at 400 °C to match the output extruded bar to the compressor size. An analysis of the microstructural features along with a chemical compositional analysis were carried out using scanning electron microscope along with energy dispersive X-ray spectroscopy and transmission electron microscope. The SEM micrographs of the extruded samples displayed cracks in primary Si, and the intermetallic (β-Al5FeSi) phase was fragmented accordingly. In addition, the silicon phase was homogenously distributed, and the size remained constant. The mechanical properties of the extruded samples were enhanced by the increase of silicon content, and consequently the ductility decreased. By implementing proper T6 heat treatment parameters, coherent Al2Cu phases were formed in the Al matrix, and the Si phase was gradually increased along with the silicon content. Therefore, high tensile strength was achieved, reaching values for the Al-XSi-3Cu-0.5Fe-0.6Mg (X = 10–14%) alloys of 366 MPa, 388 MPa, and 420 MPa, respectively.


2011 ◽  
Vol 275 ◽  
pp. 251-254
Author(s):  
Hua Wei Rong ◽  
Cheol Hong Park ◽  
Won Jo Park ◽  
Han Ki Yoon

With the rapid development of aerospace and automobile industries, metal matrix composites (MMCs) have attracted much attention because of its excellent performance. In this paper, Ni-Cr/AC8A composites reinforced with porous Ni-Cr preform were manufactured by low pressure infiltration process, infiltration temperatures are 700oC~850oC. The microstructure and phase composition of composites were evaluated using optical microscope, X-ray diffraction (XRD) and electro-probe microanalysis (EPMA), It's found that they're intermetallic compounds generated in the composites. Recently, intermetallic compounds have attracted much attention as high-temperature material. We study the hardness of Ni-Cr/AC8A composites, the results show the Ni-Cr/AC8A composite has high hardness due to the intermetallic compounds exist.


1990 ◽  
Vol 68 (8) ◽  
pp. 1352-1356 ◽  
Author(s):  
Walter Abriel ◽  
André Du Bois ◽  
Marek Zakrzewski ◽  
Mary Anne White

The crystal structure of the title compound has been determined by single crystal X-ray diffraction data collected at 293 K, and refined to a final Rw of 0.057. The crystals are rhombohedral, space group [Formula: see text], with a = 27.134(8) Å, c = 10.933(2) Å, and Z = 18. The mole ratio of Dianin's compound (4-p-hydroxyphenyl-2,2,4-trimethylchroman) to CCl4 is 6:1. The guest molecules are disordered. X-ray powder diffraction was carried out in the temperature range from 10 to 300 K. From this, the thermal expansion coefficients for the a- and c-axes and the volume have been determined. Keywords: thermal expansion, crystal structure, clathrate.


2008 ◽  
Vol 368-372 ◽  
pp. 1665-1667
Author(s):  
M.M. Wu ◽  
X.L. Xiao ◽  
Y.Z. Cheng ◽  
J. Peng ◽  
D.F. Chen ◽  
...  

A new series of solid solutions Dy2-xGdxMo4O15 (x = 0.0-0.9) were prepared. These compounds all crystallize in monoclinic structure with space group P21/c. The lattice parameters a, b, c and unit cell volumes V increase almost linearly with increasing gadolinium content. The intrinsic thermal expansion coefficients of Dy2-xGdxMo4O15 (x = 0.0 and 0.25) were obtained in the temperature range of 25 to 500°C with high-temperature X-ray diffraction. The correlation between thermal expansion and crystal structure was discussed.


2018 ◽  
Vol 281 ◽  
pp. 169-174
Author(s):  
Yang Wang ◽  
Yuan Yuan Song ◽  
Yuan Yuan Zhou ◽  
Lu Ping Yang ◽  
Fu Tian Liu

Low thermal expansion ceramics have been widely applied in multiple fields. In this paper, a series of low thermal expansion ceramics SrZr4-xTix(PO4)6 was prepared and characterized. The SrZr4-xTix(PO4)6 ceramics could be well sintered in the temperature range of 1400~1500 °C. The effect of the addition of Ti substituting Zr and the sintering temperature was studied. The Ceramic with x =0.1 sintered at 1450 °C, the SrZr4-xTix(PO4)6 had a high relative density. The thermal expansion coefficients were about 3.301×10-6 °C-1. It was demonstrated that the microstructure of the SrZr4-xTix(PO4)6 could be altered by adding varying amount of Ti to tailor the thermophysical properties of the material.


Sign in / Sign up

Export Citation Format

Share Document