scholarly journals Polymeric Substitution of Triazole Moieties in Cellulosic Schiff Base for Heavy Metal Complexation Studies

Author(s):  
R MAHALAKSHMI ◽  
SARAVANAN R ◽  
P SELVAKUMAR ◽  
M S KARTHIKEYAN ◽  
L RAVIKUMAR

Abstract The adsorption of metal ions from wastewater using Schiff base cellulose bearing pendulant heterocyclic chelating groups (MC-Tz) as a sorbent is the subject of this paper. Solid state 13 C-NMR, FT-IR, SEM, and XRD spectroscopy, as well as TGA and XRD were utilized to examine the adsorbent. The batch sorption process used pH, adsorbent dose, initial adsorbate concentration, temperature, as well as contact time to calculate the metal ion levels. The optimum pH-6.0, with the complexation reaction and ion exchange phase as the mechanisms at work. To investigate the equilibrium concentration and temperature-dependent rate constants, various models, such as the Langmuir, Freundlich, Temkin, and Redlich-Peterson adsorption isotherm were utilized. A Kinetic study shows that the Langmuir is more in agreement with the Pseudo-second order Kinetic model. Adsorption-Desorption experiments over four cycles demonstrated the feasibility of the sorbent's regeneration potential and the measured values of enthalpy and entropy explain the essence of the adsorption process. The objective of this research is to discover non-toxic, environmentally friendly adsorbent biodegradable components and to conduct evaluations to determine their use in wastewater treatment.

2019 ◽  
Author(s):  
Chem Int

An easy route for preparation emulsion of kaolinite (Al2Si2O5.4H2O) from Sweileh sand deposits, west Amman, Jordan by hydrochloric acid under continuous stirring for 4 h at room temperature was performed and nano kaolinite powder was used as an adsorbent for the removal of Cu(II), Zn(II) and Ni(II) ions. Nano kaolinite was characterized by XRD, FT-IR and SEM techniques. Effect of pH, adsorbent dose, initial metal ion concentration, contact time and temperature on adsorption process was examined. The negative values of ΔGo and the positive value of ΔHo revealed that the adsorption process was spontaneous and endothermic. The Langmuir isotherm model fitted well to metal ions adsorption data and the adsorption capacity. The kinetic data provided the best correlation of the adsorption with pseudo-second order kinetic model. In view of promising efficiency, the nano kaolinite can be employed for heavy metal ions adsorption.


2019 ◽  
Vol 10 (4) ◽  
pp. 295-304
Author(s):  
Jahangir Alam ◽  
Mohammad Nasir Uddin

A lingo-cellulosic material Jute Stick Powder was used as a biosorbent to remove Pb(II) ions from aqueous solution and the biosorption behavior was investigated as a function of pH, metal ion concentration, adsorbent dosages and agitation time. Sorption binding sites present in JSP was assessed by Infrared spectroscopy (IR) and Scanning Electron Micrograph (SEM). The determined experimental data were fitted to some common kinetic and equilibrium models. Langmuir isotherm and pseudo-second-order kinetic model gave better fit to experimental data. The study revealed that spontaneous ion-exchange and complexation process involved in the adsorption mechanism. When the repeated adsorption-desorption cycles were performed, JSP kept its adsorptive efficiency even after three cycles of reuse.


2018 ◽  
Vol 21 (8) ◽  
pp. 583-593 ◽  
Author(s):  
Sara Rahnama ◽  
Shahab Shariati ◽  
Faten Divsar

Objective: In this research, a novel magnetite titanium dioxide nanocomposite functionalized by amine groups (Fe3O4@SiO2@TiO2-NH2) was synthesized and its ability for efficient removal of Acid Fuchsine as an anionic dye from aqueous solutions was investigated. Method: The core-shell structure of Fe3O4@SiO2@TiO2 was prepared using Fe3O4 as magnetic core, tetra ethyl orthosilicate as silica and tetra butyl titanate as titanium source for shell. The synthesized nanocomposites (particle size lower than 44 nm) were characterized by FT-IR, XRD, DRS, SEM and TGA instruments. The various experimental parameters affecting dye removal efficiency were investigated and optimized using Taguchi fractional factorial design. Results: The synthesized adsorbent showed the highest removal efficiency of Acid Fuchsine (99 %) at pH= 3.5, without salt addition and during stirring at contact times less than 10 minutes. The study of kinetic models at two concentration levels showed the fast dye sorption on the surface of proposed nanocomposites with pseudo second order kinetic model (R2=1). Also, the fitting of Acid Fuchsine sorption data to Freundlich, Langmuir and Temkin isotherms suggested that Freundlich model gave a better fitting than other models (R2=0.9936, n=2). Conclusion: Good chemical stability, excellent magnetic properties, very fast adsorption kinetics and high removal efficiency make the synthesized nanocomposite as a proper recoverable sorbent for removal of Acid Fuchsine dye from wastewaters.


2012 ◽  
Vol 11 (02) ◽  
pp. 1250019 ◽  
Author(s):  
RAJESH KUMAR ◽  
S. K. JAIN

This study was carried out to evaluate the environmental application of functionalized carbon nanotubes through the experimental removal of strontium (II) from water. The aim was to find the optimal condition for the removal of strontium from water under different conditions such as initial concentration of strontium, contact time and neutral pH. The functionalized multi wall carbon nanotubes (f-MWCNT) were characterized by FT-IR and scanning electron microscopy (SEM). The adsorption isotherms were correlated to Freundlich and Langmuir models and it was found that the adsorption data could be fitted better by Langmuir model than Freundlich one. The kinetic data shows that the adsorption describes well with the pseudo-second order kinetic model. Functionalized MWCNT can be used as good adsorbent for the removal of the strontium ions from polluted water according to results.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3575-3595
Author(s):  
Wanting Li ◽  
Ruifeng Shan ◽  
Yuna Fan ◽  
Xiaoyin Sun

Desethyl-atrazine (DEA) is a metabolite of atrazine that exerts a considerable influence on the environment. In this study, tall fescue biochar was prepared by pyrolysis at 500 °C, and batch experiments were conducted to explore its effect on the adsorption behavior of DEA in red soil, brown soil, and black soil. The addition of biochar increased the equilibrium amount of DEA adsorption for the three soil types. A pseudo-second-order kinetic model most closely fit the DEA adsorption kinetics of the three soils with and without biochar, with a determination coefficient (R2) of 0.962 to 0.999. The isothermal DEA adsorption process of soils with and without biochar was optimally described by the Freundlich and Langmuir isothermal adsorption models with R2 values of 0.98 and above. The DEA adsorption process in the pristine soil involved an exothermic reaction, which became an endothermic reaction after the addition of biochar. Partitioning was dominant throughout the entire DEA adsorption process of the three pristine soils. Conversely, in soils with biochar, surface adsorption represented a greater contribution toward DEA adsorption under conditions of low equilibrium concentration. The overall results revealed that the tall fescue biochar was an effective adsorbent for DEA polluted soil.


2011 ◽  
Vol 413 ◽  
pp. 148-153 ◽  
Author(s):  
Xue Na Hu ◽  
Ya Han ◽  
Jia Yan Li ◽  
Jun Yan Wu ◽  
Jian Rong Chen ◽  
...  

Thiol-functionalized MCM-48 (SH-MCM-48) was synthesized by co-condensation method, with co-templates of cetyltrimethylammonium bromide (CTAB) and nonionic poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) triblock copolymer (Pluronic P123). The resulting material was characterized by XRD and FT-IR spectrum. The potential of SH-MCM-48 for adsorption Zn (II) from aqueous solution was examined. Batch adsorption studies were carried out to investigate the effect of experimental parameters including pH, metal ions concentration and adsorption time. The maximum adsorption capacities of Zn (II) onto SH-MCM-48 were 30.12, 34.01 and 38.02 mg g-1 at the temperature of 303, 313 and 323K, respectively. The adsorption kinetics data were found to follow the pseudo-second-order kinetic model, and adsorption isotherms were fitted well with Langmuir and Freundlich models. Moreover, the adsorption thermodynamic parameters (△G0, △H0 and △S0) were measured, and indicated that the adsorption was an exothermic and spontaneous process.


2011 ◽  
Vol 6 (3) ◽  
pp. 155892501100600 ◽  
Author(s):  
Fang Li ◽  
Chunmei Ding

Different degree of deacetylation (DD) chitosan was prepared and used for the removal of a Reactive black M-2R (RBM) from aqueous solution. The effects of temperature (298 K~323 K), chitosan dosage, degree of deacetylation on RBM removal were investigated. The adsorption equilibrium was reached within one hour. In order to determine the adsorption capacity, the sorption data were analyzed by using linear form of Langmuir, Freundlich and Tempkin isotherm equation. Langmuir equation shows higher conformity than the other two equations. From the kinetic experiment data, it was found that the sorption process follows the pseudo-second-order kinetic model. Activation energy value for sorption process was found to be 58.28 kJ mol-1. Chitosan with 66% deacetylation degree (DD) exhibited good adsorption performance for RBM. In order to determine the interactions between RBM and chitosan, FTIR analysis was also conducted.


Author(s):  
Xiaochun Yin ◽  
Nadi Zhang ◽  
Meixia Du ◽  
Hai Zhu ◽  
Ting Ke

Abstract In this paper, a series of bio-adsorbents (LR-NaOH, LR-Na2CO3 and LR-CA) were successfully prepared by modifying Licorice Residue with NaOH, Na2CO3 and citric acid, which were used as the adsorbents to remove Cu2+ from wastewater. The morphology and structure of bio-adsorbents were characterized by Fourier Transform Infrared, SEM, TG and XRD. Using static adsorption experiments, the effects of the adsorbent dosage, the solution pH, the adsorption time, and the initial Cu2+ concentration on the adsorption performance of the adsorbents were investigated. The results showed that the adsorption process of Cu2+ by the bio-adsorbents can be described by pseudo-second order kinetic model and the Langmuir model. The surface structure of the LR-NaOH, LR-Na2CO3 and LR-CA changed obviously, and the surface-active groups increased. The adsorption capacity of raw LR was 21.56 mg/g, LR-NaOH, LR- Na2CO3 significantly enhanced this value up to 43.65 mg/g, 43.55 mg/g, respectively. After four adsorption-desorption processes, the adsorption capacity of LR-NaOH also maintained about 73%. Therefore, LR-NaOH would be a promising adsorbent for removing Cu2+ from wastewater, and the simple strategy towards preparation of adsorbent from the waste residue can be as a potential approach using in the water treatment.


2018 ◽  
Vol 77 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu ◽  
Zhengjie Zhang

Abstract A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG0 and ΔH0 suggested that the adsorption was a spontaneous exothermic process.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaodong Li

Using straw and urea as raw materials, biochar (BC) and g-C3N4 were prepared by oxygen-free pyrolysis at 300°C and 550°C. BC/g-C3N4 was prepared by loading different amounts of g-C3N4 onto the surface of biochar and characterized by SEM and FT-IR. The adsorption effect on methylene blue (MB) was investigated from the aspects of dosage and pH. The studies of adsorption equilibrium isotherms and the kinetic and the thermodynamic parameters on the BC/g-C3N4 adsorbents are discussed. The results showed that BC/g-C3N4 0.16 g/L with a doping ratio of 1 : 3 was added to the MB solution with an initial concentration of 50 mg/L and pH=11. The adsorption rate and adsorption amount were 96.72% and 302.25 mg/g, respectively. The adsorption process included surface adsorption and intraparticle diffusion, which conformed to the pseudo-second-order kinetic model and Langmuir-Freundlich model. Thermodynamic parameters (ΔG0<0, ΔH0>0, and ΔS0>0) showed that the adsorption reaction is spontaneous, which positively correlated with temperature.


Sign in / Sign up

Export Citation Format

Share Document