scholarly journals MCM2 and NUSAP1 Are Potential Biomarkers for the Diagnosis and Prognosis of Pancreatic Cancer

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yajun Deng ◽  
Hanyun Ma ◽  
Jinyong Hao ◽  
Qiqi Xie ◽  
Ruochen Zhao

Pancreatic cancer (PC) is one of the most malignant tumors. Despite considerable progress in the treatment of PC, the prognosis of patients with PC is poor. The aim of this study was to identify potential biomarkers for the diagnosis and prognosis of PC. First, the original data of three independent mRNA expression datasets were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases and screened for differentially expressed genes (DEGs) using the R software. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the DEGs were performed, and a protein-protein interaction (PPI) network was constructed to screen for hub genes. The hub genes were analyzed for genetic variations, as well as for survival, prognostic, and diagnostic value, using the cBioPortal and Gene Expression Profiling Interactive Analysis (GEPIA) databases and the pROC package. After screening for potential biomarkers, the mRNA and protein levels of the biomarkers were verified at the tissue and cellular levels using the Cancer Cell Line Encyclopedia, GEPIA, and the Human Protein Atlas. As a result, a total of 248 DEGs were identified. The GO terms enriched in DEGs were related to the separation of mitotic sister chromatids and the binding of the spindle to the extracellular matrix. The enriched pathways were associated with focal adhesion, ECM-receptor interaction, and phosphatidylinositol 3-kinase (PI3K)/AKT signaling. The top 20 genes were selected from the PPI network as hub genes, and based on the analysis of multiple databases, MCM2 and NUSAP1 were identified as potential biomarkers for the diagnosis and prognosis of PC. In conclusion, our results show that MCM2 and NUSAP1 can be used as potential biomarkers for the diagnosis and prognosis of PC. The study also provides new insights into the underlying molecular mechanisms of PC.

2021 ◽  
Vol 24 (5-6) ◽  
pp. 267-279
Author(s):  
Xianyang Zhu ◽  
Wen Guo

<b><i>Background:</i></b> This study aimed to screen and validate the crucial genes involved in osteoarthritis (OA) and explore its potential molecular mechanisms. <b><i>Methods:</i></b> Four expression profile datasets related to OA were downloaded from the Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) from 4 microarray patterns were identified by the meta-analysis method. The weighted gene co-expression network analysis (WGCNA) method was used to investigate stable modules most related to OA. In addition, a protein-protein interaction (PPI) network was built to explore hub genes in OA. Moreover, OA-related genes and pathways were retrieved from Comparative Toxicogenomics Database (CTD). <b><i>Results:</i></b> A total of 1,136 DEGs were identified from 4 datasets. Based on these DEGs, WGCNA further explored 370 genes included in the 3 OA-related stable modules. A total of 10 hub genes were identified in the PPI network, including <i>AKT1</i>, <i>CDC42</i>, <i>HLA-DQA2</i>, <i>TUBB</i>, <i>TWISTNB</i>, <i>GSK3B</i>, <i>FZD2</i>, <i>KLC1</i>, <i>GUSB</i>, and <i>RHOG</i>. Besides, 5 pathways including “Lysosome,” “Pathways in cancer,” “Wnt signaling pathway,” “ECM-receptor interaction” and “Focal adhesion” in CTD and enrichment analysis and 5 OA-related hub genes (including <i>GSK3B, CDC42, AKT1, FZD2</i>, and <i>GUSB</i>) were identified. <b><i>Conclusion:</i></b> In this study, the meta-analysis was used to screen the central genes associated with OA in a variety of gene expression profiles. Three OA-related modules (green, turquoise, and yellow) containing 370 genes were identified through WGCNA. It was discovered through the gene-pathway network that <i>GSK3B, CDC42, AKT1, FZD2</i>, <i>and GUSB</i> may be key genes related to the progress of OA and may become promising therapeutic targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maryum Nisar ◽  
Rehan Zafar Paracha ◽  
Iqra Arshad ◽  
Sidra Adil ◽  
Sabaoon Zeb ◽  
...  

Pancreatic cancer (PaCa) is the seventh most fatal malignancy, with more than 90% mortality rate within the first year of diagnosis. Its treatment can be improved the identification of specific therapeutic targets and their relevant pathways. Therefore, the objective of this study is to identify cancer specific biomarkers, therapeutic targets, and their associated pathways involved in the PaCa progression. RNA-seq and microarray datasets were obtained from public repositories such as the European Bioinformatics Institute (EBI) and Gene Expression Omnibus (GEO) databases. Differential gene expression (DE) analysis of data was performed to identify significant differentially expressed genes (DEGs) in PaCa cells in comparison to the normal cells. Gene co-expression network analysis was performed to identify the modules co-expressed genes, which are strongly associated with PaCa and as well as the identification of hub genes in the modules. The key underlaying pathways were obtained from the enrichment analysis of hub genes and studied in the context of PaCa progression. The significant pathways, hub genes, and their expression profile were validated against The Cancer Genome Atlas (TCGA) data, and key biomarkers and therapeutic targets with hub genes were determined. Important hub genes identified included ITGA1, ITGA2, ITGB1, ITGB3, MET, LAMB1, VEGFA, PTK2, and TGFβ1. Enrichment analysis characterizes the involvement of hub genes in multiple pathways. Important ones that are determined are ECM–receptor interaction and focal adhesion pathways. The interaction of overexpressed surface proteins of these pathways with extracellular molecules initiates multiple signaling cascades including stress fiber and lamellipodia formation, PI3K-Akt, MAPK, JAK/STAT, and Wnt signaling pathways. Identified biomarkers may have a strong influence on the PaCa early stage development and progression. Further, analysis of these pathways and hub genes can help in the identification of putative therapeutic targets and development of effective therapies for PaCa.


2021 ◽  
Author(s):  
Cailin xue ◽  
Peng gao ◽  
Xudong zhang ◽  
Xiaohan cui ◽  
Lei jin ◽  
...  

Abstract Background: Abnormal methylation of DNA sequences plays an important role in the development and progression of pancreatic cancer (PC). The purpose of this study was to identify abnormal methylation genes and related signaling pathways in PC by comprehensive bioinformatic analysis of three datasets in the Gene Expression Omnibus (GEO). Methods: Datasets of gene expression microarrays (GSE91035, GSE15471) and gene methylation microarrays (GSE37480) were downloaded from the GEO database. Aberrantly methylated-differentially expressed genes (DEGs) were analysis by GEO2R software. GO and KEGG enrichment analyses of selected genes were performed using DAVID database. A protein–protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. Core module analysis was performed by Mcode in Cytoscape. Hub genes were obtained by CytoHubba app. in Cytoscape software. Results: A total of 267 hypomethylation-high expression genes, which were enriched in biological processes of cell adhesion, biological adhesion and regulation of signaling were obtained. KEGG pathway enrichment showed ECM-receptor interaction, Focal adhesion and PI3K-Akt signaling pathway. The top 5 hub genes of PPI network were EZH2, CCNA2, CDC20, KIF11, UBE2C. As for hypermethylation-low expression genes, 202 genes were identified, which were enriched in biological processes of cellular amino acid biosynthesis process and positive regulation of PI3K activity, etc. The pathways enriched were the pancreatic secretion and biosynthesis of amino acids pathways, etc. The five significant hub genes were DLG3, GPT2, PLCB1, CXCL12 and GNG7. In addition, five genes, including CCNA2, KIF11, UBE2C, PLCB1 and GNG7, significantly associated with patient's prognosis were also identified. Conclusion: Novel genes with abnormal expression were identified, which will help us further understand the molecular mechanism and related signaling pathways of PC, and these aberrant genes could possibly serve as biomarkers for precise diagnosis and treatment of PC.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9301
Author(s):  
Dandan Jin ◽  
Yujie Jiao ◽  
Jie Ji ◽  
Wei Jiang ◽  
Wenkai Ni ◽  
...  

Background Pancreatic cancer is one of the most common malignant cancers worldwide. Currently, the pathogenesis of pancreatic cancer remains unclear; thus, it is necessary to explore its precise molecular mechanisms. Methods To identify candidate genes involved in the tumorigenesis and proliferation of pancreatic cancer, the microarray datasets GSE32676, GSE15471 and GSE71989 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between Pancreatic ductal adenocarcinoma (PDAC) and nonmalignant samples were screened by GEO2R. The Database for Annotation Visualization and Integrated Discovery (DAVID) online tool was used to obtain a synthetic set of functional annotation information for the DEGs. A PPI network of the DEGs was established using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and a combination of more than 0.4 was considered statistically significant for the PPI. Subsequently, we visualized the PPI network using Cytoscape. Functional module analysis was then performed using Molecular Complex Detection (MCODE). Genes with a degree ≥10 were chosen as hub genes, and pathways of the hub genes were visualized using ClueGO and CluePedia. Additionally, GenCLiP 2.0 was used to explore interactions of hub genes. The Literature Mining Gene Networks module was applied to explore the cocitation of hub genes. The Cytoscape plugin iRegulon was employed to analyze transcription factors regulating the hub genes. Furthermore, the expression levels of the 13 hub genes in pancreatic cancer tissues and normal samples were validated using the Gene Expression Profiling Interactive Analysis (GEPIA) platform. Moreover, overall survival and disease-free survival analyses according to the expression of hub genes were performed using Kaplan-Meier curve analysis in the cBioPortal online platform. The relationship between expression level and tumor grade was analyzed using the online database Oncomine. Lastly, the eight snap-frozen tumorous and adjacent noncancerous adjacent tissues of pancreatic cancer patients used to detect the CDK1 and CEP55 protein levels by western blot. Conclusions Altogether, the DEGs and hub genes identified in this work can help uncover the molecular mechanisms underlying the tumorigenesis of pancreatic cancer and provide potential targets for the diagnosis and treatment of this disease.


2020 ◽  
Author(s):  
Wenqiong Qin ◽  
Qiang Yuan ◽  
Yi Liu ◽  
Ying Zeng ◽  
Dandan Ke ◽  
...  

Abstract Background Ovarian tumors are the most malignant tumors of all gynecological tumors, and although multiple efforts have been made to elucidate the pathogenesis, the molecular mechanisms of ovarian cancer remain unclear. Methods In this study, we used bioinformatics to identify genes involved in the carcinogenesis and progression of ovarian cancer. Three microarray datasets (GSE14407, GSE29450, and GSE54388) were downloaded from Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified. For a more in-depth understanding of the DEGs, functional and pathway enrichment analyses were performed and a protein-protein interaction (PPI) network was constructed. The associated transcriptional factor (TFs) regulation network of the DEGs was also constructed. Kaplan Meier-plotter, Gene Expression Profiling Interactive Analysis (GEPIA), the Human Protein Atlas (HPA) database and the Oncomine database were implemented to validated hub genes. Results A total of 514 DEGs were detected after the analysis of the three gene expression profiles, including 171 upregulated and 343 downregulated genes. Nine hub genes ( CCNB1, CDK1, BUB1, CDC20, CCNA2, BUB1B, AURKA, RRM2, TTK) were obtained from the PPI network. Survival analysis showed that high expression levels of seven hub genes ( CCNB1, BUB1, BUB1B, CCNA2, AURKA, CDK1, and RRM2) were associated with worse overall survival (OS). All of seven hub genes were discovered highly expressed in ovarian cancer samples compared to normal ovary samples in GEPIA. Immunostaining results from the HPA database suggested that the expressions of CCNB1, CCNA2, AURKA, and CDK1 proteins were increased in ovarian cancer tissues, and Oncomine analysis indicated that the expression patterns of BUB1B, CCNA2, AURKA, CCNB1, CDK1, and BUB1 have associated with patient clinicopathological information. From the gene-transcriptional factor network, key transcriptional factors, such as POLR2A, ZBTB11, KLF9, and ELF1, were identified with close interactions with these hub genes. Conclusion We identified six significant DEGs with poor prognosis in ovarian cancer, which could be of potential biomarkers for ovarian cancer patients.


2021 ◽  
pp. 1-13
Author(s):  
Simei Tu ◽  
Hao Zhang ◽  
Xiaocheng Yang ◽  
Wen Wen ◽  
Kangjing Song ◽  
...  

BACKGROUND: Since the molecular mechanisms of cervical cancer (CC) have not been completely discovered, it is of great significance to identify the hub genes and pathways of this disease to reveal the molecular mechanisms of cervical cancer. OBJECTIVE: The study aimed to identify the biological functions and prognostic value of hub genes in cervical cancer. METHODS: The gene expression data of CC patients were downloaded from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database. The core genes were screened out by differential gene expression analysis and weighted gene co-expression network analysis (WGCNA). R software, the STRING online tool and Cytoscape software were used to screen out the hub genes. The GEPIA public database was used to further verify the expression levels of the hub genes in normal tissues and tumour tissues and determine the disease-free survival (DFS) rates of the hub genes. The protein expression of the survival-related hub genes was identified with the Human Protein Atlas (HPA) database. RESULTS: A total of 64 core genes were screened, and 10 genes, including RFC5, POLE3, RAD51, RMI1, PALB2, HDAC1, MCM4, ESR1, FOS and E2F1, were identified as hub genes. Compared with that in normal tissues, RFC5, POLE3, RAD51,RMI1, PALB2, MCM4 and E2F1 were all significantly upregulated in cervical cancer, ESR1 was significantly downregulated in cervical cancer, and high RFC5 expression in CC patients was significantly related to OS. In the DFS analysis, no significant difference was observed in the expression level of RFC5 in cervical cancer patients. Finally, RFC5 protein levels verified by the HPA database were consistently upregulated with mRNA levels in CC samples. CONCLUSIONS: RFC5 may play important roles in the occurrence and prognosis of CC. It could be further explored and validated as a potential predictor and therapeutic target for CC.


2021 ◽  
Author(s):  
Yujia Liu ◽  
Xiaoping Hu ◽  
Zongfu Pan ◽  
Yuchen Jiang ◽  
Dandan Guo ◽  
...  

Abstract Background: Gastric cancer is one of the most common fatal disease worldwide, but its mechanism and therapeutic targets are still unclear. In this study, we have analyzed the differences in gene modules and key pathways in gastric cancer patients, then elaborated the mechanism and effective treatment of gastric cancer with microarray data from the gene expression omnibus(GEO) database. Methods: GEO2R tools were used to identify differential expression genes (DEGs), String database was employed to construct a protein-protein interaction (PPI) network. We imported the PPI network into the Cytoscape software to find key nodes, and employed statistical approach of MCODE to cluster genes. After that the ClueGO was used to enrich and annotate the pathways of key modules. To investigate the relationship between the upstream regulator and hub genes, the transcriptional regulatory network was built based on TFCAT database. Results: 63 characteristic genes of gastric cancer are involved in regulation of ECM-receptor interaction, focal adhesion and protein digestion and absorption. SPARC, FN1, BGN and COL1A2 are four key nodes relating to tumor proliferation and metastasis, and their expression were strongly associated with poor survival (p<0.05). 13 transcription factors including PRRX1 have remarkable changes in gastric cancer, which may play a key role in hub gene regulation. Conclusions: The present study defined the gene expression characteristics and transcriptional regulatory network that promote our understanding of the molecular mechanisms underlying the development of gastric cancer, and might provide new insights into targeted therapy and prognostic markers for the personalized treatment of gastric cancer.


2021 ◽  
Author(s):  
Suwei Tang ◽  
Ping Xu ◽  
Shaoqiong Xie ◽  
Wencheng Jiang ◽  
Jiajing Lu ◽  
...  

Abstract Background: Psoriasis is a relatively common autoimmune inflammatory skin disease with a chronic etiology. The present study was designed to detect novel biomarkers and pathways associated with psoriasis incidence. Methods: Differentially expressed genes (DEGs) associated with psoriasis in the Gene Expression Omnibus (GEO) database were identified, and their functional roles and interactions were then annotated and evaluated through GO, KEGG, and gene set variation (GSVA) analyses. In addition, the STRING database was leveraged to construct a protein-protein interaction (PPI) network, and key hub genes from this network were validated as being relevant through receiver operating characteristic (ROC) curve analyses of three additional GEO datasets. The CIBERSORT database was additionally used to assess the relationship between these gene expression-related findings and immune cell infiltration. Results: In total 197 psoriasis-related DEGs were identified and found to primarily be associated with the NOD-like receptor, IL-17, and cytokine-cytokine receptor interaction signaling pathways. GSVA revealed significant differences between normal and lesional groups (P < 0.05), while PPI network analyses identified CXCL10 as the hub gene with the highest degree value, whereas IRF7, IFIT3, OAS1, GBP1, and ISG15 were promising candidate genes for the therapeutic treatment of psoriasis. ROC analyses confirmed that these 6 hub genes exhibited good diagnostic efficacy (AUC > 70%), and were predicted to be associated with increased sensitivity to 10 drugs (P < 0.01). The CIBERSORT database further predicted that these hub genes were associated with infiltration by 22 different immune cell types. Conclusion: These results offer a robust foundation for future studies of the molecular basis for psoriasis, potentially guiding efforts to treat this common and disruptive disease.


2020 ◽  
Author(s):  
Yumei Li ◽  
Bifei Li ◽  
Fan Chen ◽  
Weiyu Shen ◽  
Vladimir L. Katanaev ◽  
...  

Abstract Background Metastasis is the leading cause of melanoma mortality. Current therapies are rarely curative for metastatic melanoma, revealing the urgent need to identify more effective preventive and therapeutic targets. This study aimed to screen for the key core genes and molecular mechanisms related to the metastasis of melanoma. Methods Gene expression profile, GSE8401 including 31 primary melanoma and 52 metastatic melanoma clinical samples, was downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between metastatic melanoma and primary melanoma were screened using GEO2R. Assays of gene ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG) pathway and protein-protein interaction (PPI) were performed to visualize these DEGs through Database for Annotation, Visualization and Integrated Discovery (DAVID) software and Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape with Molecular Complex Detection (MCODE) plug-in tools. Top 10 genes with high degree were defined as hub genes. Furthermore, paired post-metastatic melanoma cells and pre-metastatic melanoma cells were established by experimental mouse model of melanoma metastasis to verify the expression of these hub genes. Results 424 DEGs between the metastatic melanoma and primary melanoma were screened, including 60 upregulated genes enriched in ECM-receptor interaction and progesterone-mediated oocyte maturation and 364 downregulated genes enriched in amoebiasis, melanogenesis, and ECM-receptor interaction. CDH1, EGFR, KRT5, COL17A1, KRT14, IVL, DSP, DSG1, FLG and CDK1 were defined as the hub genes. . In addition, paired post-metastatic melanoma cells (A375M) and pre-metastatic melanoma cells (A375) were established and qRT-PCR analysis confirmed the expression of the hub genes during melanoma metastasis. Conclusion This bioinformatic study has provided a deeper understanding of the molecular mechanisms of melanoma metastasis. KRT5, IVL and COL17A1 have emerged as possible biomarkers and therapeutic targets in metastasis of melanoma.


2021 ◽  
Vol 18 (6) ◽  
pp. 8997-9015
Author(s):  
Ahmed Hammad ◽  
◽  
Mohamed Elshaer ◽  
Xiuwen Tang ◽  
◽  
...  

<abstract> <p>Colorectal cancer (CRC) is one of the most common malignancies worldwide. Biomarker discovery is critical to improve CRC diagnosis, however, machine learning offers a new platform to study the etiology of CRC for this purpose. Therefore, the current study aimed to perform an integrated bioinformatics and machine learning analyses to explore novel biomarkers for CRC prognosis. In this study, we acquired gene expression microarray data from Gene Expression Omnibus (GEO) database. The microarray expressions GSE103512 dataset was downloaded and integrated. Subsequently, differentially expressed genes (DEGs) were identified and functionally analyzed via Gene Ontology (GO) and Kyoto Enrichment of Genes and Genomes (KEGG). Furthermore, protein protein interaction (PPI) network analysis was conducted using the STRING database and Cytoscape software to identify hub genes; however, the hub genes were subjected to Support Vector Machine (SVM), Receiver operating characteristic curve (ROC) and survival analyses to explore their diagnostic values. Meanwhile, TCGA transcriptomics data in Gene Expression Profiling Interactive Analysis (GEPIA) database and the pathology data presented by in the human protein atlas (HPA) database were used to verify our transcriptomic analyses. A total of 105 DEGs were identified in this study. Functional enrichment analysis showed that these genes were significantly enriched in biological processes related to cancer progression. Thereafter, PPI network explored a total of 10 significant hub genes. The ROC curve was used to predict the potential application of biomarkers in CRC diagnosis, with an area under ROC curve (AUC) of these genes exceeding 0.92 suggesting that this risk classifier can discriminate between CRC patients and normal controls. Moreover, the prognostic values of these hub genes were confirmed by survival analyses using different CRC patient cohorts. Our results demonstrated that these 10 differentially expressed hub genes could be used as potential biomarkers for CRC diagnosis.</p> </abstract>


Sign in / Sign up

Export Citation Format

Share Document