scholarly journals Control of A Tomato Plant Root-Knot Nematode By Induced Resistance Of Oxalic Acid Derived From Aspergillus Niger

Author(s):  
Jehyeong Yeon ◽  
Ae Ran Park ◽  
MinKyu-Kang ◽  
Van Thi Nguyen ◽  
Yookyung Lee ◽  
...  

Abstract Aspergillus niger F22 producing oxalic acid (OA) as a nematicidal component is currently used as a microbial nematicide. OA is known to induce systemic resistance in plant diseases caused by fungi, bacteria, and viruses, but the induced resistance of OA has not yet been elucidated in plant diseases caused by root-knot nematodes (RKNs). In this study, we investigated the functional mechanism of induced resistance of A. niger F22 formulation (Nemafree, 20% SC) and OA in tomato plant RKN disease caused by Meloidogyne incognita and analyzed their effectiveness against the disease. Foliar spray and soil drench treatments of Nemafree and OA were effective in the management of M. incognita in tomato plant in-pot experiments. When Nemafree and OA were applied 4 days before inoculation of M. incognita eggs, the treatments of Nemafree (4,000-fold dilution) and OA (0.22 mM) reduced root gall formation by more than 50%. The soil drench treatment also effectively suppressed RKN disease in field experiments. Moreover, the treatments of Nemafree and OA enhanced the transcriptional expression of pathogenesis-related 1 gene, plant proteinase inhibitor-II, and polyphenol oxidase genes and improved the production of total phenols, flavonoids, and lignin in the tomato plants infected with M. incognita. These results demonstrate that RKN diseases can be effectively controlled by induced resistance even at low concentrations of Nemafree or OA. Accordingly, our study provides evidence for more economical and efficient application strategies of microbial nematicides that control RKNs under field conditions.

2011 ◽  
Vol 24 (4) ◽  
pp. 395-407 ◽  
Author(s):  
Rogier F. Doornbos ◽  
Bart P. J. Geraats ◽  
Eiko E. Kuramae ◽  
L. C. Van Loon ◽  
Peter A. H. M. Bakker

Systemically induced resistance is a promising strategy to control plant diseases, as it affects numerous pathogens. However, since induced resistance reduces one or both growth and activity of plant pathogens, the indigenous microflora may also be affected by an enhanced defensive state of the plant. The aim of this study was to elucidate how much the bacterial rhizosphere microflora of Arabidopsis is affected by induced systemic resistance (ISR) or systemic acquired resistance (SAR). Therefore, the bacterial microflora of wild-type plants and plants affected in their defense signaling was compared. Additionally, ISR was induced by application of methyl jasmonate and SAR by treatment with salicylic acid or benzothiadiazole. As a comparative model, we also used wild type and ethylene-insensitive tobacco. Some of the Arabidopsis genotypes affected in defense signaling showed altered numbers of culturable bacteria in their rhizospheres; however, effects were dependent on soil type. Effects of plant genotype on rhizosphere bacterial community structure could not be related to plant defense because chemical activation of ISR or SAR had no significant effects on density and structure of the rhizosphere bacterial community. These findings support the notion that control of plant diseases by elicitation of systemic resistance will not significantly affect the resident soil bacterial microflora.


2009 ◽  
Vol 147 (5) ◽  
pp. 523-535 ◽  
Author(s):  
D. R. WALTERS ◽  
J. M. FOUNTAINE

SUMMARYPlants resist pathogen attack through a combination of constitutive and inducible defences. Different types of induced resistance have been defined based on differences in signalling pathways and spectra of effectiveness. Systemic acquired resistance (SAR) occurs in distal plant parts following localized infection by a necrotizing pathogen. It is controlled by a signalling pathway that depends upon the accumulation of salicylic acid (SA) and the regulatory protein NPR1. In contrast, induced systemic resistance (ISR) is promoted by selected strains of non-pathogenic plant growth-promoting rhizobacteria (PGPR). ISR functions independently of SA, but requires NPR1 and is regulated by jasmonic acid (JA) and ethylene (ET).Resistance can be induced by treatment with a variety of biotic and abiotic inducers. The resistance induced is broad spectrum and can be long-lasting, but is rarely complete, with most inducing agents providing between 0·20 and 0·85 disease control. In the field, expression of induced resistance is likely to be influenced by the environment, genotype, crop nutrition and the extent to which plants are already induced. Unfortunately, understanding of the impact of these influences on the expression of induced resistance is rudimentary. So too is understanding of how best to use induced resistance in practical crop protection. This situation will need to change if induced resistance is to fulfil its potential in crop protection.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Cheng-Hua Huang ◽  
Gary E. Vallad ◽  
Shouan Zhang ◽  
Amin Wen ◽  
Botond Balogh ◽  
...  

Acibenzolar-S-methyl (ASM), a plant activator known to induce systemic acquired resistance, has demonstrated an ability to manage a number of plant diseases, including bacterial spot on tomato caused by four distinct Xanthomonas spp. The aim of this study was to evaluate application rate and frequency of ASM in order to optimize field efficacy against bacterial spot in Florida, while minimizing its impact on marketable yields. ASM was applied biweekly (once every 2 weeks) as a foliar spray at a constant concentration of 12.9, 64.5, and 129 μM throughout four field experiments during 2007–08. A standard copper program and an untreated control were also included. Overall, biweekly applications of ASM did not significantly reduce disease development or the final disease severity of bacterial spot compared with the copper-mancozeb standard or the untreated control. Only one experiment showed a significant reduction in the final disease severity on plants treated with ASM at 129 μM compared with the untreated control. Three additional field trials conducted during 2009–10 to evaluate the effects of weekly and biweekly applications of ASM at concentrations of 30.3 to 200 μM found that weekly applications provided significantly better disease control than biweekly applications. The tomato yields were not statistically improved with the use of ASM relative to the untreated control and standard copper program. Weekly ASM applications at rates as low as 75 μM (equivalent to 1.58 g a.i./ha in 100 liters of water or 0.21 oz. a.i./acre in 100 gallons of water) to 200 μM (equivalent to 4.20 g a.i./ha in 100 liters of water or 0.56 oz. a.i./acre in 100 gallons of water) were statistically equivalent in managing bacterial spot of tomato without significantly reducing yield compared with the untreated control.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Jinyun Li ◽  
Vladimir G. Kolbasov ◽  
Zhiqian Pang ◽  
Shuo Duan ◽  
Donghwan Lee ◽  
...  

AbstractHuanglongbing (HLB) or greening disease, associated with the bacterial pathogen Candidatus Liberibacter asiaticus (Las), is currently the most devastating citrus disease worldwide and no cure is available. Inducers of systemic acquired resistance (SAR) are effective and sustainable to combat various plant diseases. In this study, the SAR inducers acibenzolar-S-methyl (ASM), imidacloprid (IMI), 2,6-dichloroisonicotinic acid (INA), and salicylic acid (SA), applied individually by foliar spray, soil drench or trunk injection at various rates and frequencies, were evaluated for control of HLB in a 3-year field trial with mature Hamlin sweet orange trees in central Florida, USA in the 2016, 2017, and 2018 crop seasons. Six foliar sprays, six soil applications, and three trunk injections of ASM, IMI, INA, or SA per year were conducted with the untreated as a negative control. HLB disease severity, Las titers, pre-harvest fruit drop, yield and fruit quality were investigated for the treatments. By the end of the 2018 season, all trunk injection treatments at 0.25 g/tree and foliar sprays of INA or SA (but not ASM or IMI) at 0.5 g/tree significantly reduced disease severity, Las population, and fruit drop, and increased fruit yield; whereas all foliar spray treatments at 0.25 g/tree, trunk injection treatments at 0.125 g/tree, and soil drench treatments at 0.25 or 0.5 g/tree did not provide effective control of HLB. Additionally, all trunk injection treatments at 0.25 g/tree had shown a significant decrease in fruit drop and increase of fruit yield starting from 2016 after 1 year of applications, whereas foliar sprays of INA or SA at 0.5 g/tree exhibited similar effects at 2018 after 3 years of applications. None of the SAR inducer treatments had significant effect on fruit quality. Economic analysis suggested that the trunk injection treatments at 0.25 g/tree might produce financial benefits. Overall, this study presents useful information for management of citrus HLB with SAR inducers.


2019 ◽  
Vol 56 (3) ◽  
pp. 294-304
Author(s):  
C Sharmila Rahale

Six field experiments were conducted at Tamil Nadu Rice Research Institute, Aduthurai to evolve suitable zinc fertilization method for rice - rice (Oryza sativa L.) cropping system in Cauvery delta zone. The treatment includes: T1 : Control, T2 : 100 g zinc sulphate (ZnSO4)/cent in nursery alone., T3 : root dipping alone in 2 % zinc oxide (ZnO) solution, T4 : 25 kg ZnSO4 ha-1, T5 : 37.5 kg ZnSO4 ha-1, T6 : 25 kg ZnSO4 ha-1+ Farm Yard Manure (FYM) 12.5 t ha-1, T7 : 25 kg ZnSO4 ha-1 + Green Leaf Manure (GLM) 6.5 t ha-1, T8 : Tamil Nadu Agricultural University Micro Nutrient (TNAU MN) mixture 25 kg ha-1 as Enriched Farm Yard Manure (EFYM), T9 : TNAU MN mixture 37.5 kg ha-1 as EFYM, T10 : Foliar spray of 0.5% ZnSO4 + 1 % urea at tillering and panicle initiation stage, T11 : 100g ZnSO4 /cent in nursery alone + Foliar spray of 0.5 % ZnSO4 + 1 % urea at tillering and panicle initiation stage (T2+ T10), T12 : root dipping alone in 2 % ZnO solution + Foliar spray of 0.5 % ZnSO4 + 1 % urea at tillering and panicle initiation stage (T3 + T10), T13: 100 g ZnSO4 /cent in nursery alone + root dipping alone in 2 % ZnO solution + Foliar spray of 0.5 % ZnSO4 + 1 % urea at tillering and panicle initiation stage (T2 + T3 + T10). The treatments T5, T6, T7 and T9 were skipped in rabi season to know the residual effect of these treatments in the subsequent season. Among the treatment combinations, application of 25 kg ZnSO4 ha-1 + FYM 12.5 t ha-1 recorded higher grain yield in both kharif (6232 kg ha-1) and rabi (6236 kg ha-1) seasons. The same treatment combination recorded higher Zn content and Zn uptake as well. Regarding soil nutrient content, the same treatment recorded higher N, P and K content. This treatment was followed by application of 25 kg ZnSO4 ha-1 + green leaf manure 6.5 t ha-1. The experimental findings suggested that combination of organic and inorganic sources not only increased the yield but also improves soil health in Cauvery delta zone.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 584
Author(s):  
Omnia M. Elshayb ◽  
Khaled Y. Farroh ◽  
Heba E. Amin ◽  
Ayman M. Atta

Applications of metal oxide nanoparticles in the agriculture sector are being extensively included as the materials are considered superior. In the present work, zinc oxide nanoparticle (ZnO NPs), with a developing fertilizer, is applied in the fortification of rice grain yield and nutrient uptake enhancement. To evaluate the role of ZnO NP, two field experiments were conducted during the 2018 and 2019 seasons. ZnO NPs were small, nearly spherical, and their sizes equal to 31.4 nm, as proved via the dynamic light scattering technique. ZnO NPs were applied as a fertilizer in different concentrations, varying between 20 and 60 mg/L as a foliar spray. The mixture of ZnSO4 and ZnO NP40 ameliorated yield component and nutrients (N, K, and Zn) uptake was enhanced compared to traditional ZnSO4 treatment. Nevertheless, the uptake of the phosphorous element (P) was adversely affected by the treatment of ZnO NPs. Thus, treatment via utilizing ZnO NPs as a foliar with a very small amount (40 ppm) with of basal ZnSO4 led to a good improvement in agronomic and physiological features; eventually, higher yield and nutrient-enriched rice grain were obtained.


2010 ◽  
Vol 23 (5) ◽  
pp. 585-592 ◽  
Author(s):  
Lennart Eschen-Lippold ◽  
Simone Altmann ◽  
Sabine Rosahl

Inducing systemic resistance responses in crop plants is a promising alternative way of disease management. To understand the underlying signaling events leading to induced resistance, functional analyses of plants defective in defined signaling pathway steps are required. We used potato, one of the economically most-important crop plants worldwide, to examine systemic resistance against the devastating late blight pathogen Phytophthora infestans, induced by treatment with dl-β-aminobutyric acid (BABA). Transgenic plants impaired in either the 9-lipoxygenase pathway, which produces defense-related compounds, or the 13-lipoxygenase pathway, which generates jasmonic acid–derived signals, expressed wild-type levels of BABA-induced resistance. Plants incapable of accumulating salicylic acid (SA), on the other hand, failed to mount this type of induced resistance. Consistently, treatment of these plants with the SA analog 2,6-dichloroisonicotinic acid restored BABA-induced resistance. Together, these results demonstrate the indispensability of a functional SA pathway for systemic resistance in potato induced by BABA.


2007 ◽  
Vol 131 (2) ◽  
pp. S175 ◽  
Author(s):  
Takasumi Hattori ◽  
Shusuke Takahashi ◽  
Kuniki Kino ◽  
Kohtaro Kirimura

Revista CERES ◽  
2014 ◽  
Vol 61 (1) ◽  
pp. 62-69
Author(s):  
Gessimar Nunes Camelo ◽  
Geraldo Antonio de Andrade Araújo ◽  
Renildes Lucio Ferreira Fontes ◽  
Luiz Antonio dos Santos Dias ◽  
José Eustáquio de Souza Carneiro ◽  
...  

The effect of molybdenum (Mo) on common bean grown in desiccated corn stover in a no-tillage system was evaluated under two application modes: Mo mixed with the desiccant glyphosate and Mo direct spray to the bean leaves. The treatments (four replicates) were assigned to a completely randomized block design in a split-plot arrangement with the application of Mo (0, 100, 200, 400 and 800 g ha-1) mixed with glyphosate in the main plots and Mo foliar spray (0 and 100 g ha-1) in the sub-plots. The field experiments were carried out in 2009 and 2010 in the municipality of Coimbra, Minas Gerais State, with the common bean cultivar Ouro Vermelho. Mo mixed with glyphosate had neither an effect on common bean yield nor on the Mo and N contents in leaves, however it increased the Mo and N contents in seeds. Application of Mo via foliar spray increased Mo content in leaves and Mo and N contents in seeds. The reapplication of molybdenum with glyphosate for desiccation in subsequent crops caused a cumulative effect of Mo content in bean seeds.


Sign in / Sign up

Export Citation Format

Share Document