scholarly journals Life Cycle Assessment (LCA) of biobased packaging solutions for Extended Shelf-Life (ESL) milk

Author(s):  
Giulia Cappiello ◽  
Clizia Aversa ◽  
Annalisa Genovesi ◽  
Massimiliano Barletta

Abstract The dairy market is one of the most important sectors worldwide and milk packaging contributes to over one third of the global dairy packaging demand. The end-of-life of the disposable packages is a critical stage of their life cycle, as demonstrated by the fact that disposable bottles are one of the litter items that are most found on beach shores. The aim of this paper is to analyse the performance of Bio-plastic bottles compared to other alternatives currently in use in the milk packaging sector, using the Life Cycle Assessment (LCA) methodology. Bio-compostable plastic can be a powerful means to create a circular economy for disposable items. A PLA-based bottle is compared to a PET bottle, a HDPE bottle, a Multilayer carton and a Glass bottle. In the analysis, also secondary and tertiary packaging is included. The functional unit chosen is “the packaging needed to contain 1 litre of ESL milk and to guarantee a shelf life of 30 days”. Two sensitivity analysis are also performed in order to assess the influence of the end-of-life stage on the total impact. The results show that Bioplastic system has a better performance than fossil-based systems and Multilayer carton in the categories of Climate Change, Ozone Depletion, Human toxicity and Freshwater Eutrophication. The recycling scenario strongly changes the impact of the Glass packaging system in the considered categories.

2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


2016 ◽  
Vol 35 (4) ◽  
pp. 357-366 ◽  
Author(s):  
Joke Anthonissen ◽  
Wim Van den bergh ◽  
Johan Braet

Bituminous pavement can be recycled – even multiple times – by reusing it in new bituminous mixtures. If the mechanical properties of the binder get worse, this reclaimed asphalt is often used in the sub-structure of the road. Apparently, up till now, no end-of-life phase exists for the material. Actually, defining the end-of-life and the end-of-waste stage of a material is important for life cycle assessment modelling. Various standards and scientific studies on modelling life cycle assessment are known, but the crucial stages are not yet defined for reclaimed asphalt pavement. Unlike for iron, steel and aluminium scrap, at this moment, no legislative end-of-waste criteria for aggregates are formulated by the European Commission. More research is necessary in order to develop valuable end-of-life criteria for aggregates. This contribution is a mini-review article of the current regulations, standards and studies concerning end-of-life and end-of-waste of reclaimed asphalt pavement. The existing methodology in order to define end-of-waste criteria, a case study on aggregates and the argumentation used in finished legislative criteria are the basis to clarify some modelling issues for reclaimed asphalt material. Hence, this contribution elucidates the assignment of process environmental impacts to a life cycle stage as defined by EN15804, that is, end-of-life stage (C) and the supplementary information Module D with benefits and loads beyond the system boundary.


2019 ◽  
Vol 11 (19) ◽  
pp. 5324 ◽  
Author(s):  
Daniel Maga ◽  
Markus Hiebel ◽  
Venkat Aryan

In light of the debate on the circular economy, the EU strategy for plastics, and several national regulations, such as the German Packaging Act, polymeric foam materials as well as hybrid packaging (multilayered plastic) are now in focus. To understand the environmental impacts of various tray solutions for meat packaging, a comparative environmental assessment was conducted. As an environmental assessment method, a life cycle assessment (LCA) was applied following the ISO standards 14040/44. The nine packaging solutions investigated were: PS-based trays (extruded polystyrene and extruded polystyrene with five-layered structure containing ethylene vinyl alcohol), PET-based trays (recycled polyethylene terephthalate, with and without polyethylene layer, and amorphous polyethylene terephthalate), polypropylene (PP) and polylactic acid (PLA). The scope of the LCA study included the production of the tray and the end-of-life stage. The production of meat, the filling of the tray with meat and the tray sealing were not taken into account. The results show that the PS-based trays, especially the mono material solutions made of extruded polystyrene (XPS), show the lowest environmental impact across all 12 impact categories except for resource depletion. Multilayer products exhibit higher environmental impacts. The LCA also shows that the end-of-life stage has an important influence on the environmental performance of trays. However, the production of the trays dominates the overall results. Furthermore, the sensitivity analysis illustrates that, even if higher recycling rates were realised in the future, XPS based solutions would still outperform the rest from an environmental perspective.


2021 ◽  
Vol 11 (8) ◽  
pp. 3599
Author(s):  
Isabella Bianco ◽  
Deborah Panepinto ◽  
Mariachiara Zanetti

Waste tyres and their accumulation is a global environmental concern; they are not biodegradable, and, globally, an estimated 1.5 billion are generated annually. Every year around 350,000 tons of end-of-life tyres (ELT) are managed in Italy, collected from cars, two-wheeled vehicles, trucks, up to large quarry vehicles and agricultural vehicles. ELTs are collected and sent for material or energy recovery, in line with the circular economy principles. This paper investigates the environmental impacts of two common scenarios of ELT treatments. Specifically, it is analysed the recycling of crumb rubber (CR, deriving from the tyre shredding) for the composition of bituminous mixtures for the wearing course of roads. This scenario is compared with the energy recovery route in a dedicated incinerator. To this aim the standardised methodology of Life Cycle Assessment (ISO 14040-44) is employed. Results shows that for most part of the impact categories analysed, the material recovery presents higher environmental benefits if compared with energy recovery.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012012
Author(s):  
H Adnan ◽  
A T Balasbaneh

Abstract Life cycle assessment (LCA) is conducted in order to evaluate the environmental impacts of products chosen from the manufacturing phase and the end-of life cycle of the material and in clay brick and concrete were chose as the observed products. Brick is one of the important construction materials that can be seen at the surrounding. Main objective for this study is to investigate the impact of production of different types of brick to the level of emissions of carbon dioxide to the environment. Four stages of life cycle assessment were conducted before the result for the study analysis can be obtained and that stages including goal and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA) and the interpretation part. The results obtained from the simulation of the Simapro shown that the concrete contributes more negative impact compared production of clay brick in terms of global warming, ozone depletion, formation of fine particulate matter and ozone formation. Manufacture of clay brick contributes more negative impact to the ionizing radiation, freshwater eutrophication and mineral resource scarcity.


Author(s):  
Moritz Dreyer ◽  
Stefan Hörtenhuber ◽  
Werner Zollitsch ◽  
Henry Jäger ◽  
Lisa-Marie Schaden ◽  
...  

Abstract Purpose Global food production needs to increase to provide enough food for over 9 billion people living by 2050. Traditional animal production is among the leading causes for climate change and occupation of land. Edible insects might be a sustainable protein supply to humans, but environmental life cycle assessment (LCA) studies on them are scarce. This study performs an LCA of a small-scale production system of yellow mealworms (Tenebrio molitor) in Central Europe that are supplied with organic feedstuff. Methods A combined ReCiPe midpoint (H) and CED method is used to estimate the potential environmental impacts from cradle-to-gate. Impact categories include global warming potential (GWP), non-renewable energy use (NREU), agricultural land occupation (ALOP), terrestrial acidification potential (TAP) and freshwater eutrophication potential (FEP). The robustness of the results is tested via sensitivity analyses and Monte Carlo simulations. Results and discussion Impacts related to the production of 1 kg of edible mealworm protein amount to 20.4 kg CO2-eq (GWP), 213.66 MJ-eq (NREU), 22.38 m2 (ALOP), 159.52 g SO2-eq (TAP) and 12.41 g P-eq (FEP). Upstream feed production and on-farm energy demand related to the heating of the facilities are identified as environmental hot-spots: Depending on the impact category, feed supply contributes up to 90% and on-farm heating accounts for up to 65% of overall impacts. The organic mealworm production system is contrasted with a selected Austrian organic broiler production system, to which it compares favourably (18–72% lower impacts per category), with the exception of freshwater eutrophication (6% higher impacts). Conclusions This case study shows that the Austrian mealworm production system compares favourably to traditional livestock systems. Compared to LCAs from large-scale T. molitor rearing facilities in France and in the Netherlands, however, the Austrian production system cannot compete for the reasons of production scale, feed conversion efficiency and type of production system. Nevertheless, the investigated mealworms represent a sustainable protein alternative that should be added to the Western diet.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Anna Elisabeth Gnielka ◽  
Christof Menzel

AbstractEvery consumer’s decision has an impact on the environment, and even basic food products such as pasta have an impact due to their high consumption rates. Factors that can be influenced by the consumer include the preparation (cooking), last mile and packaging phases. The last mile has not been considered in most studies but contributes considerably to the environmental impact of pasta. The three phases and their environmental impact on the life cycle of pasta are analyzed in this cradle-to-grave life cycle assessment. The focus of the study lies on the impact categories climate change, agricultural land occupation, fossil depletion, water depletion, freshwater eutrophication and freshwater ecotoxicity. Inventory data were taken from other studies, were collected in cooperation with a zero-packaging organic grocery store in Germany or were gained in test series. Our results show that the preparation of pasta has the greatest environmental impact (over 40% in the impact categories climate change and fossil depletion and over 50% in the impact category freshwater eutrophication), followed by the last mile (over 20% in the impact categories climate change and fossil depletion) and lastly the packaging (nearly 9% in the impact categories freshwater eutrophication and freshwater ecotoxicity). Based on our study´s results, we provide some recommendations for minimizing the environmental impacts of pasta.


Entecho ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 6-9
Author(s):  
Nikola Kráľová ◽  
Markéta Šerešová ◽  
Vladimír Kočí

Cílem práce bylo posoudit environmentální dopady různých typů zvolených jogurtových kelímků vyrobených z různých materiálů: z plastu, papíru, skla či z kompozitního materiálu. Environmentální dopady byly vyhodnoceny metodou posuzování životního cyklu (z angl. life cycle assessment, LCA). Výsledky práce ukazují, že skleněné a kompozitní obaly jsou horší než obaly plastové, s výjimkou kategorie dopadu Spotřeba fosilních surovin a humánní toxicita. Jako nejlepší vychází plastový obal s K3 dekorací (papír), který ve všech hodnocených kategoriích dopadu vykazuje nejlepší výsledky. V kategorii dopadu Klimatické změny se nejhůř umístil kompozitní obal a obal skleněný. Nejvíce ovlivněnou kategorií je Sladkovodní ekotoxicita, nejvyšší dopady v rámci této kategorie vykazuje obal skleněný a následně kompozitní. V rámci kategorie dopadu Ionizující záření má největší dopad skleněný obal následovaný obalem kompozitním. Na základě výsledků výzkumu bylo zjištěno, že hlavní příčinou dopadů plastových kelímků na životní prostředí je výroba PP granulátu, u skleněných obalů je to výroba samotného skla a v případě kompozitních obalů výroba kompozitního obalu. Abstract (en) The aim of the work was to assess the environmental impacts of different types of selected yoghurt cups made of different materials: plastic, paper, glass or composite material. Environmental impacts were assessed using the life cycle assessment (LCA) method. The results of the work show that glass and composite packaging is worse than plastic packaging except for the impact category Resource use (mineral and metals) and Human toxicity. The best packaging appears to be plastic packaging with K3 decoration (paper), which has the smallest impacts in all evaluated impact categories. In the impact category Climate change, composite packaging and glass packaging have the greatest impact. The most affected category is Freshwater ecotoxicity. The highest impacts within this category are shown by glass packaging and subsequently composite packaging. In the impact category Ionizing radiation, the greatest impact has a glass packaging, then a composite packaging. Based on the results, it was determined that the main cause of the impacts of plastic cups is the production of PP granulate. In the case of glass packaging, it is the production of the glass itself, and in the case of composite packaging, the production of the composite packaging.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2146 ◽  
Author(s):  
Sina Herceg ◽  
Sebastián Pinto Bautista ◽  
Karl-Anders Weiß

PV waste management will gain relevance proportionally to the amounts of waste that are expected to arise with the phasing-out of old installations in the upcoming years and decades. The Life Cycle Assessment (LCA) methodology is used here to analyze the environmental performance of photovoltaic systems and the waste management methods that have been developed recently. Several LCA studies have already been performed for PV technologies, but in most cases these do not include the end of life stage, thus there is still uncertainty about the impacts of recycling on the environmental footprint of PV electricity. The present study offers a more detailed analysis of different end-of-life approaches for the main photovoltaic technologies that are found on the market. The results from the analysis demonstrate that recycling has the potential to improve the environmental profile of PV electricity but at the same time there is room for further improvements in developing dedicated recycling technologies.


2018 ◽  
Author(s):  
Alexandra LUCA ◽  
David SANCHEZ DOMENE ◽  
Francisca ARAN AIS

Sign in / Sign up

Export Citation Format

Share Document