scholarly journals Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets

Author(s):  
Yan Duan ◽  
Joana Coutinho ◽  
Lorena Rosaleny ◽  
Salvador Cardona ◽  
José J. Baldoví ◽  
...  

Abstract Three decades of intensive research in molecular nanomagnets have brought the magnetic memory in molecules from liquid helium to liquid nitrogen temperature. The enhancement of this operational temperature relies on a wise choice of the magnetic ion and the coordination environment. However, serendipity, oversimplified theories and chemical intuition have played the main role. In order to establish a powerful framework for statistically driven chemical design, we collected chemical and physical data for lanthanide-based nanomagnets to create a catalogue of over 1400 published experiments, developed an interactive dashboard (SIMDAVIS) to visualise the dataset, and applied inferential statistical analysis to it. We found that the effective energy barrier derived from the Arrhenius equation displays an excellent correlation with the magnetic memory, and that among all chemical families studied, only terbium bis-phthalocyaninato sandwiches and dysprosium metallocenes consistently present magnetic memory up to high temperature, but that there are some promising strategies for improvement.

2022 ◽  
Author(s):  
Michał Magott ◽  
Maria Brzozowska ◽  
Stanisław Baran ◽  
Veacheslav Vieru ◽  
Dawid Pinkowicz

The best performing molecular nanomagnets are currently designed by carefully arranging p-element donor atoms (usually carbon, nitrogen and/or oxygen) around the central magnetic ion. Inspired by the structure of the hardest intermetallic magnet SmCo5, we have demonstrated a nanomagnetic molecule where the central lanthanide (Ln) ion Er is coordinated solely by three transition metal (TM) ions in a perfectly trigonal planar fashion. The molecule [Er(ReCp2)3] (ErRe3) constitutes the first example of a molecular nanomagnet (MNM; or single molecule magnet SMM) with unsupported Ln-TM bonds and paves the way towards molecular intermetallics with strong direct magnetic exchange interactions. Such interactions are believed to be crucial for quenching the quantum tunneling of magnetization which limits the application of Ln-SMMs as sub-nanometer magnetic memory units.


Author(s):  
Claude Lechene

Electron probe microanalysis of frozen hydrated kidneysThe goal of the method is to measure on the same preparation the chemical elemental content of the renal luminal tubular fluid and of the surrounding renal tubular cells. The following method has been developed. Rat kidneys are quenched in solid nitrogen. They are trimmed under liquid nitrogen and mounted in a copper holder using a conductive medium. Under liquid nitrogen, a flat surface is exposed by sawing with a diamond saw blade at constant speed and constant pressure using a custom-built cryosaw. Transfer into the electron probe column (Cameca, MBX) is made using a simple transfer device maintaining the sample under liquid nitrogen in an interlock chamber mounted on the electron probe column. After the liquid nitrogen is evaporated by creating a vacuum, the sample is pushed into the special stage of the instrument. The sample is maintained at close to liquid nitrogen temperature by circulation of liquid nitrogen in the special stage.


Author(s):  
O. T. Inal ◽  
L. E. Murr

When sharp metal filaments of W, Fe, Nb or Ta are observed in the field-ion microscope (FIM), their appearance is differentiated primarily by variations in regional brightness. This regional brightness, particularly prominent at liquid nitrogen temperature has been attributed in the main to chemical specificity which manifests itself in a paricular array of surface-atom electron-orbital configurations.Recently, anomalous image brightness and streaks in both fcc and bee materials observed in the FIM have been shown to be the result of surface asperities and related topographic features which arise by the unsystematic etching of the emission-tip end forms.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Author(s):  
Hideo Hayashi ◽  
Yoshikazu Hirai ◽  
John T. Penniston

Spectrin is a membrane associated protein most of which properties have been tentatively elucidated. A main role of the protein has been assumed to give a supporting structure to inside of the membrane. As reported previously, however, the isolated spectrin molecule underwent self assemble to form such as fibrous, meshwork, dispersed or aggregated arrangements depending upon the buffer suspended and was suggested to play an active role in the membrane conformational changes. In this study, the role of spectrin and actin was examined in terms of the molecular arrangements on the erythrocyte membrane surface with correlation to the functional states of the ghosts.Human erythrocyte ghosts were prepared from either freshly drawn or stocked bank blood by the method of Dodge et al with a slight modification as described before. Anti-spectrin antibody was raised against rabbit by injection of purified spectrin and partially purified.


Author(s):  
N. P. Dmitrieva

One of the most characteristic features of cancer cells is their ability to metastasia. It is suggested that the modifications of the structure and properties of cancer cells surfaces play the main role in this process. The present work was aimed at finding out what ultrastructural features apear in tumor in vivo which removal of individual cancer cells from the cell population can provide. For this purpose the cellular interactions in the normal human thyroid and cancer tumor of this gland electron microscopic were studied. The tissues were fixed in osmium tetroxide and were embedded in Araldite-Epon.In normal human thyroid the most common type of intercellular contacts was represented by simple junction formed by the parallelalignment of adjacent cell membranees leaving in between an intermembranes space 15-20 nm filled with electronlucid material (Fig. 1a). Sometimes in the basal part of cells dilatations of the intercellular space 40-50 nm wide were found (Fig. 1a). Here the cell surfaces may form single short microvilli.


Author(s):  
G. G. Cocks ◽  
C. E. Cluthe

The freeze etching technique is potentially useful for examining dilute solutions or suspensions of macromolecular materials. Quick freezing of aqueous solutions in Freon or propane at or near liquid nitrogen temperature produces relatively large ice crystals and these crystals may damage the structures to be examined. Cryoprotective agents may reduce damage to the specimem, hut their use often results in the formation of a different set of specimem artifacts.In a study of the structure of polyethylene oxide gels glycerol and sucrose were used as cryoprotective agents. The experiments reported here show some of the structures which can appear when these cryoprotective agents are used.Figure 1 shows a fractured surface of a frozen 25% aqueous solution of sucrose. The branches of dendritic ice crystals surrounded hy ice-sucrose eutectic can be seen. When this fractured surface is etched the ice in the dendrites sublimes giving the type of structure shown in Figure 2. The ice-sucrose eutectic etches much more slowly. It is the smooth continuous structural constituent surrounding the branches of the dendrites.


Author(s):  
M.K. Lamvik ◽  
D.A. Kopf ◽  
S.D. Davilla ◽  
J.D. Robertson

Last year we reported1 that there is a striking reduction in the rate of mass loss when a specimen is observed at liquid helium temperature. It is important to determine whether liquid helium temperature is significantly better than liquid nitrogen temperature. This requires a good understanding of mass loss effects in cold stages around 100K.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


Author(s):  
Denny D. Tang ◽  
Yuan-Jen Lee
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document