scholarly journals Ribosomal Protein S27-Like is overexpressed in glioma cells and inhibition of RPS27L expression suspends the tumorigenesis

2020 ◽  
Author(s):  
Zhongzheng Sun ◽  
Hao Xue ◽  
Yan Wei ◽  
Shaobo Wang ◽  
Jianye Xu ◽  
...  

Abstract Background: Ribosomal Protein S27-Like is an evolutionarily conserved ribosomal protein and the role of RPS27L influencing the malignance of several cancers has been reported. However, its effects on glioma were still unknown. This investigation aims to characterize the clinical significance and the biological functions of RPS27L in gliomas.Methods: TCGA databases were explored to analyze the correlation between RPS27L expression and the clinical characteristics of glioma patients. Immunohistochemical staining was performed on glioma cases and normal brain tissues. The function of RPS27L in glioma was further explored using U87MG and A172 cell lines and a orthotopic xenograft model of nude mice.Results: Data obtained from TCGA database showed higher expression of RPS27L in glioma than normal, and the overall survival was lower in the high expression group. Immunohistochemistry showed the expression levels of RPS27L were increased with the tumor grade rising in gliomas. Functional assays showed knockdown of RPS27L inhibited proliferation, cell cycle transition, migration and invasion, while promoted apoptosis. Data of western blot indicated that knockdown of RPS27L increased the level of p21,Bax and Cleaved Caspase-3 while decreased the level of CDK4, cyclinD1, cyclinE1, Bcl-2 and MMP2, MMP9 in glioma cells. In vivo, the growth of orthotopic glioma xenografts was suppressed by expression of RPS27L shRNA, and the tumors with RPS27L shRNA showed less aggressiveness and reduced expression of Ki67, Bcl-2 and MMP2. Conclusions: RPS27L is overexpressed in glioma cells. Knockdown of RPS27L could inhibit the proliferation, migration and invasion while promote apoptosis of glioma cells in vitro and in vivo. RPS27L might be a potential prognostic biomarker and possible target for future therapy in glioma.

2020 ◽  
Author(s):  
Zhongzheng Sun ◽  
Hao Xue ◽  
Yan Wei ◽  
Shaobo Wang ◽  
Jianye Xu ◽  
...  

Abstract Background: Ribosomal Protein S27-Like is an evolutionarily conserved ribosomal protein and the role of RPS27L influencing the malignance of several cancers has been reported. However, its effects on glioma were still unknown. This investigation aims to characterize the clinical significance and the biological functions of RPS27L in gliomas.Methods: TCGA databases were explored to analyze the correlation between RPS27L expression and the clinical characteristics of glioma patients. Immunohistochemical staining was performed on glioma cases and normal brain tissues. The function of RPS27L in glioma was further explored using U87MG and A172 cell lines and a orthotopic xenograft model of nude mice.Results: Data obtained from TCGA database showed higher expression of RPS27L in glioma than normal, and the overall survival was lower in the high expression group. Immunohistochemistry showed the expression levels of RPS27L were increased with the tumor grade rising in gliomas. Functional assays showed knockdown of RPS27L inhibited proliferation, cell cycle transition, migration and invasion, while promoted apoptosis. Data of western blot indicated that knockdown of RPS27L increased the level of p21,Bax and Cleaved Caspase-3 while decreased the level of CDK4, cyclinD1, cyclinE1, Bcl-2 and MMP2, MMP9 in glioma cells. In vivo, the growth of orthotopic glioma xenografts was suppressed by expression of RPS27L shRNA, and the tumors with RPS27L shRNA showed less aggressiveness and reduced expression of Ki67, Bcl-2 and MMP2. Conclusions: RPS27L is overexpressed in glioma cells. Knockdown of RPS27L could inhibit the proliferation, migration and invasion while promote apoptosis of glioma cells in vitro and in vivo. RPS27L might be a potential prognostic biomarker and possible target for future therapy in glioma.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii12-iii12
Author(s):  
M Han ◽  
S Wang ◽  
X Li ◽  
J Wang ◽  
R Bjerkvig

Abstract BACKGROUND Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24-hydroxylase (CYP46A1), a brain-specific enzyme responsible for elimination of cholesterol through conversion of cholesterol to 24(S)-hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. MATERIAL AND METHODS Molecular and clinical data was obtained from publicly genomic databases. Immunohistochemistry was applied to assess protein levels of CYP46A1 in primary GBM samples. Lentiviral constructs expressing CYP46A1 were transduced into LN229, LN18 and primary GBM GSCs for functional assays carried out in vitro and in vivo in an orthotopic xenograft model. RNA-seq was performed to identify downstream targets of 24OHC. RESULTS CYP46A1 was significantly decreased in GBM samples compared to normal brain tissue. Reduced CYP46A1 expression was associated with increasing tumour grade and poor prognosis in GBM patients. Ectopic expression of CYP46A1 suppressed cell proliferation and in vivo tumour growth by increasing 24OHC levels. Treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz (EFV), an activator of CYP46A1 with BBB penetration, inhibited GBM growth in vivo. CONCLUSION Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Anqi Xu ◽  
Xizhao Wang ◽  
Jie Luo ◽  
Mingfeng Zhou ◽  
Renhui Yi ◽  
...  

AbstractThe homeobox protein cut-like 1 (CUX1) comprises three isoforms and has been shown to be involved in the development of various types of malignancies. However, the expression and role of the CUX1 isoforms in glioma remain unclear. Herein, we first identified that P75CUX1 isoform exhibited consistent expression among three isoforms in glioma with specifically designed antibodies to identify all CUX1 isoforms. Moreover, a significantly higher expression of P75CUX1 was found in glioma compared with non-tumor brain (NB) tissues, analyzed with western blot and immunohistochemistry, and the expression level of P75CUX1 was positively associated with tumor grade. In addition, Kaplan–Meier survival analysis indicated that P75CUX1 could serve as an independent prognostic indicator to identify glioma patients with poor overall survival. Furthermore, CUX1 knockdown suppressed migration and invasion of glioma cells both in vitro and in vivo. Mechanistically, this study found that P75CUX1 regulated epithelial–mesenchymal transition (EMT) process mediated via β-catenin, and CUX1/β-catenin/EMT is a novel signaling cascade mediating the infiltration of glioma. Besides, CUX1 was verified to promote the progression of glioma via multiple other signaling pathways, such as Hippo and PI3K/AKT. In conclusion, we suggested that P75CUX1 could serve as a potential prognostic indicator as well as a novel treatment target in malignant glioma.


Oncogene ◽  
2021 ◽  
Author(s):  
Xin-Ke Yin ◽  
Yun-Long Wang ◽  
Fei Wang ◽  
Wei-Xing Feng ◽  
Shao-Mei Bai ◽  
...  

AbstractArginine methylation is an important posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs). However, the role of PRMTs in colorectal cancer (CRC) progression is not well understood. Here we report that non-POU domain-containing octamer-binding protein (NONO) is overexpressed in CRC tissue and is a potential marker for poor prognosis in CRC patients. NONO silencing resulted in decreased proliferation, migration, and invasion of CRC cells, whereas overexpression had the opposite effect. In a xenograft model, tumors derived from NONO-deficient CRC cells were smaller than those derived from wild-type (WT) cells, and PRMT1 inhibition blocked CRC xenograft progression. A mass spectrometry analysis indicated that NONO is a substrate of PRMT1. R251 of NONO was asymmetrically dimethylated by PRMT1 in vitro and in vivo. Compared to NONO WT cells, NONO R251K mutant-expressing CRC cells showed reduced proliferation, migration, and invasion, and PRMT1 knockdown or pharmacological inhibition abrogated the malignant phenotype associated with NONO asymmetric dimethylation in both KRAS WT and mutant CRC cells. Compared to adjacent normal tissue, PRMT1 was highly expressed in the CRC zone in clinical specimens, which was correlated with poor overall survival in patients with locally advanced CRC. These results demonstrate that PRMT1-mediated methylation of NONO at R251 promotes CRC growth and metastasis, and suggest that PRMT1 inhibition may be an effective therapeutic strategy for CRC treatment regardless of KRAS mutation status.


Oncogenesis ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Dawei Zhu ◽  
Xing Gu ◽  
Zhengyu Lin ◽  
Dandan Yu ◽  
Jing Wang

AbstractGallbladder cancer (GBC) is a common malignant tumor of the biliary tract, which accounts for 80–95% of biliary tumors worldwide, and is the leading cause of biliary malignant tumor-related death. This study identified PSMC2 as a potential regulator in the development of GBC. We showed that PSMC2 expression in GBC tissues is significantly higher than that in normal tissues, while high PSMC2 expression was correlated with more advanced tumor grade and poorer prognosis. The knockdown of PSMC2 in GBC cells induced significant inhibition of cell proliferation, colony formation and cell motility, while the promotion of cell apoptosis. The construction and observation of the mice xenograft model also confirmed the inhibitory effects of PSMC2 knockdown on GBC development. Moreover, our mechanistic study recognized GNG4 as a potential downstream target of PSMC2, knockdown of which could aggravate the tumor suppression induced by PSMC2 knockdown in vitro and in vivo. In conclusion, for the first time, PSMC2 was revealed as a tumor promotor in the development of GBC, which could regulate cell phenotypes of GBC cells through the interaction with GNG4, and maybe a promising therapeutic target in GBC treatment.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi97-vi97
Author(s):  
Satoshi Suehiro ◽  
Takanori Ohnishi ◽  
Akihiro Inoue ◽  
Daisuke Yamashita ◽  
Masahiro Nishikawa ◽  
...  

Abstract OBJECTIVE High invasiveness of malignant gliomas frequently causes local tumor recurrence. To control such recurrence, novel therapies targeted toward infiltrating glioma cells are required. Here, we examined cytotoxic effects of sonodynamic therapy (SDT) combined with a sonosensitizer, 5-aminolevulinic acid (5-ALA), on malignant gliomas both in vitro and in vivo. METHODS In vitro cytotoxicity of 5-ALA-SDT was evaluated in U87 and U251 glioma cells and in U251Oct-3/4 glioma stemlike cells. Treatment-related apoptosis was analyzed using flow cytometry. Intracellular reactive oxygen species (ROS) were measured and the role of ROS in treatment-related cytotoxicity was examined. Effects of 5-ALA-SDT with high-intensity focused ultrasound (HIFU) on tumor growth, survival of glioma-transplanted mice, and histological features of the mouse brains were investigated. RESULTS The 5-ALA-SDT inhibited cell growth and changed cell morphology. Flow cytometric analysis indicated that 5-ALA-SDT induced apoptotic cell death. The 5-ALA-SDT generated higher ROS than in the control group, and inhibition of ROS generation completely eliminated the cytotoxic effects of 5-ALA-SDT. In the in vivo study, 5-ALA-SDT with HIFU greatly prolonged survival of the tumor-bearing mice compared with that of the control group (p < 0.05). Histologically, 5-ALA-SDT produced mainly necrosis of the tumor tissue in the focus area and induced apoptosis of the tumor cells in the perifocus area around the target of the HIFU-irradiated field. Normal brain tissues around the ultrasonic irradiation field of HIFU remained intact. CONCLUSIONS The 5-ALA-SDT was cytotoxic toward malignant gliomas. Generation of ROS by the SDT was thought to promote apoptosis of glioma cells. The 5-ALA-SDT with HIFU induced tumor necrosis in the focus area and apoptosis in the perifocus area of the HIFU-irradiated field. These results suggest that 5-ALA-SDT with HIFU may present a less invasive and tumor-specific therapy, not only for a tumor mass but also for infiltrating tumor cells in malignant gliomas.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


2021 ◽  
Author(s):  
Xuyang Lv ◽  
Jiangchuan Sun ◽  
Linfeng Hu ◽  
Ying Qian ◽  
Chunlei Fan ◽  
...  

Abstract Background: Although curcumol has been shown to possess antitumor effects in several cancers, its effects on glioma are largely unknown. Recently, lncRNAs have been reported to play an oncogenic role through epigenetic modifications. Therefore, here, we investigated whether curcumol inhibited glioma progression by reducing FOXD2-AS1-mediated enhancer of zeste homolog 2 (EZH2) activation.Methods: MTT, colony formation, flow cytometry, Transwell, and neurosphere formation assays were used to assess cell proliferation, cell cycle, apoptosis, the percentage of CD133+ cells, the migration and invasion abilities, and the self-renewal ability. qRT-PCR, western blotting, immunofluorescence, and immunohistochemical staining were used to detect mRNA and protein levels. Isobologram analysis and methylation-specific PCR were used to analyze the effects of curcumol on TMZ resistance in glioma cells. DNA pull-down and Chip assays were employed to explore the molecular mechanism underlying the functions of curcumol in glioma cells. Tumorigenicity was determined using a xenograft formation assay. Results: Curcumol inhibited the proliferation, metastasis, self-renewal ability, and TMZ resistance of glioma cells in vitro and in vivo. FOXD2-AS1 was highly expressed in glioma cell lines, and its expression was suppressed by curcumol treatment in a dose- and time-dependent manner. The forced expression of FOXD2-AS1 abrogated the effect of curcumol on glioma cell proliferation, metastasis, self-renewal ability, and TMZ resistance. Moreover, the forced expression of FOXD2-AS1 reversed the inhibitory effect of curcumol on EZH2 activation.Conclusions: We showed for the first time that curcumol is effective in inhibiting malignant biological behaviors and TMZ-resistance of glioma cells by suppressing FOXD2-AS1-mediated EZH2 activation on anti-oncogenes. Our findings offer the possibility of exploiting curcumol as a promising therapeutic agent for glioma treatment and may provide an option for the clinical application of this natural herbal medicine.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2305 ◽  
Author(s):  
Yu-Cheng Chou ◽  
Meng-Ya Chang ◽  
Hsu-Tung Lee ◽  
Chiung-Chyi Shen ◽  
Tomor Harnod ◽  
...  

Phenethyl isothiocyanate (PEITC) from cruciferous vegetables can inhibit the growth of various human cancer cells. In previous studies, we determined that PEITC inhibited the in vitro growth of human glioblastoma GBM 8401 cells by inducing apoptosis, inhibiting migration and invasion, and altering gene expression. Nevertheless, there are no further in vivo reports disclosing whether PEITC can suppress the growth of glioblastoma. Therefore, in this study we investigate the anti-tumor effects of PEITC in a xenograft model of glioblastoma in nude mice. Thirty nude mice were inoculated subcutaneously with GBM 8401 cells. Mice with one palpable tumor were divided randomly into three groups: control, PEITC-10, and PEITC-20 groups treated with 0.1% dimethyl sulfoxide (DMSO), and 10 and 20 μmole PEITC/100 μL PBS daily by oral gavage, respectively. PEITC significantly decreased tumor weights and volumes of GBM 8401 cells in mice, but did not affect the total body weights of mice. PEITC diminished the levels of anti-apoptotic proteins MCL-1 (myeloid cell leukemia 1) and XIAP (X-linked inhibitor of apoptosis protein) in GBM 8401 cells. PEITC enhanced the levels of caspase-3 and Bax in GBM 8401 cells. The growth of glioblastoma can be suppressed by the biological properties of PEITC in vivo. These effects might support further investigations into the potential use of PEITC as an anticancer drug for glioblastoma.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 192 ◽  
Author(s):  
Yuli Yan ◽  
Xingyu Liu ◽  
Jie Gao ◽  
Yin Wu ◽  
Yuxin Li

Background: Dracocephalum peregrinum L., a traditional Kazakh medicine, has good expectorant, anti-cough, and to some degree, anti-asthmatic effects. Diosmetin (3′,5,7-trihydroxy-4′-methoxyflavone), a natural flavonoid found in traditional Chinese herbs, is the main flavonoid in D. peregrinum L. and has been used in various medicinal products because of its anticancer, antimicrobial, antioxidant, estrogenic, and anti-inflammatory effects. The present study aimed to investigate the effects of diosmetin on the proliferation, invasion, and migration of glioma cells, as well as the possible underlying mechanisms. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound, and Transwell assays were used to demonstrate the effects of diosmetin in glioma. Protein levels of Bcl-2, Bax, cleaved caspase-3, transforming growth factor-β (TGF-β), E-cadherin, and phosphorylated and unphosphorylated smad2 and smad3 were determined by Western blots. U251 glioma cell development and progression were measured in vivo in a mouse model. Results: Diosmetin inhibited U251 cell proliferation, migration, and invasion in vitro, the TGF-β signaling pathway, and Bcl-2 expression. In contrast, there was a significant increase in E-cadherin, Bax, and cleaved caspase-3 expression. Furthermore, it effectively reduced the tumorigenicity of glioma cells and promoted apoptosis in vivo. Conclusion: The results of this study suggest that diosmetin suppresses the growth of glioma cells in vitro and in vivo, possibly by activating E-cadherin expression and inhibiting the TGF-β signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document