scholarly journals The Effect of Electrode Shape on Schottky Barrier and Electric Field Distribution of Flexible ZnO Photodiode

Author(s):  
Zahra Aminrayai Jezeh ◽  
Babak Efafi ◽  
Bijan Ghafary

Abstract Three metal-semiconductor-metal (MSM) ultraviolet flexible self-powered photodiode (PDs) were fabricated, which differed in the shape of the electrodes. Here, the effect of the electrode's shape on the height of the Schottky barrier and the electric field in these PDs was investigated. They were prepared based on porous Zinc Oxide (ZnO) on fiberglass. Different shapes of the electrodes affect the height of the Schottky barrier in each metal-semiconductor contact and provide the basis for the formation of self-powered PDs. It also affects the electric field generated in the PD's bias condition and affects the PD's parameter. They were fabricated using the radio frequency (RF) sputtering technique, and copper electrodes with different shapes and a sample with interdigitated electrodes were created using the printed circuit board (PCB) method. The photocurrent of the sample with circular and rectangular electrodes was equal to 470 μA in 15V bias, which was twice as good as a sample with an interdigitated MSM structure. It also had the best photocurrent at 0V, which is equal to 0.8 μA. This sample had the best response time among these three samples, which was equal to 440 ms. It is noteworthy that the simulation data confirmed the practical results.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zahra Aminrayai Jezeh ◽  
Babak Efafi ◽  
Bijan Ghafary

AbstractIn this study, the effect of electrode shape difference on the height of the Schottky barrier and the electric field in flexible photodiodes (PDs) has been investigated. For this purpose, three different electrode designs were prepared on three flexible FR4 layers that were coated with Zinc Oxide (ZnO). The printing circuit board (PCB) method was used to create these copper electrodes. The asymmetry of the PD electrodes and the difference in the height of the Schottky barrier has led to the creation of self-powered PDs. The effect of the amount and shape of the distribution of internal electric fields generated in the PDs and its effect on the parameters of the PDs has been investigated with the help of simulations performed in COMSOL software. The photocurrent of the sample with circular and rectangular electrodes was equal to 470 µA in 15 V bias, which was twice as good as a sample with an interdigitated MSM structure. Also, this sample had the best response time among these three samples, which was equal to 440 ms.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhuang Hui ◽  
Ming Xiao ◽  
Daozhi Shen ◽  
Jiayun Feng ◽  
Peng Peng ◽  
...  

Abstract With the increase in the use of electronic devices in many different environments, a need has arisen for an easily implemented method for the rapid, sensitive detection of liquids in the vicinity of electronic components. In this work, a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition (EPD). The open-circuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100 μA when 6 μL of water was applied. The generator is also found to have a stable and reproducible response to other liquids. An output voltage of 0.3 V was obtained after 244, 876, 931, and 184 μs, on exposure of the generator to 6 μL of water, ethanol, acetone, and methanol, respectively. The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid. In addition, the simple easily implemented sequential EPD method ensures the high mechanical strength of the device. This compact, reliable device provides a new method for the sensitive, rapid detection of extraneous liquids before they can impact the performance of electronic circuits, particularly those on printed circuit board.


Author(s):  
Reza Hadjiaghaie Vafaie ◽  
Hossein Dehganpour ◽  
Abolfazl Moradpour

Purpose Digital microfluidic devices have been demonstrated to have great potential for a wide range of applications. These devices need expensive photolithography process and clean room facilities, while printed circuit board (PCB) technology provides high configurability and at low cost. This study aims to investigate the mechanism of electrowetting-on-a-dielectric (EWOD) on PCB by solving the multiphysics interaction between fluid droplet and electric field. The performance of system will be improved by inducing an efficient electric field inside the droplet. Design/methodology/approach To induce an electric field inside the droplet on a PCB and change the initial contact angle, the mechanism of EWOD is studied based on energy minimization method and a set of simulations are carried out by considering multiphysics interaction between the fluid droplet and external electric field. The performance of EWOD on a PCB system is investigated using different electrode structures. Findings Surface tension plays an efficient role in smaller sizes and can be used to move and control a fluid droplet on a surface by changing the interfacial surface tension. EWOD on a PCB system is studied. and it revealed that any change in electric field affects the droplet contact angle and as a result droplet deformation and movement. The electrode pattern is an important parameter which could change the electric potential distribution inside the droplet. Array of electrodes with square, zigzag interdigitated and crescent shapes are studied to enhance the EWOD force on a PCB substrate. Based on the results, the radial shape of the crescent electrodes keeps almost the same actuated contact line, applies uniform force on the droplet periphery and prevents the droplet from large deformation. A droplet velocity of 0.6 mm/s is achieved by exciting the crescent electrodes at 315 V. Furthermore, the behavior of system is characterized for process parameters such as actuation voltage, dielectric constant of insulator layer, fluidic material properties and the resultant velocity and contact angle. The study of contact angle distribution and droplet motion revealed that it is helpful to generate EWOD mechanism on a PCB which does not need more complicated fabrication processes. Originality/value The ability to handle and manipulate the droplets is very important for chemistry on-chip analysis such as immunoassay chips. Furthermore, a PCB-based electrowetting-on-dielectric device is of high interest because it does not need cleanroom facilities and avoids additional high-cost fabrication processes. In the present research, the EWOD mechanism is studied on a PCB by using different electrode patterns.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuxin Yang ◽  
Xiaofei Wei ◽  
Nannan Zhang ◽  
Juanjuan Zheng ◽  
Xing Chen ◽  
...  

AbstractWhile the printed circuit board (PCB) has been widely considered as the building block of integrated electronics, the world is switching to pursue new ways of merging integrated electronic circuits with textiles to create flexible and wearable devices. Herein, as an alternative for PCB, we described a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method. All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI “nurse” for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.


2017 ◽  
Vol 13 (4-2) ◽  
pp. 540-545
Author(s):  
Ahmad Fairuzabadi Mohd Mansor ◽  
Phirdaous Abbas ◽  
Taufik Hakim Hamdan ◽  
Yumi Zuhanis Has-Yun Hashim ◽  
Anis Nurashikin Nordin

Natural products have traditionally been used for medicinal purposes in Asian communities. Toxicity studies typically use animal testing to predict the harmfulness of a particular substance to human health. For this study, in lieu of animal testing, we utilize cell-based biosensors to evaluate the toxicity of natural products. The cell-based biosensors are fabricated on a printed circuit board with copper electrodes and are equipped with PDMS cell culture chambers. Two different electrodes (interdigitated and circular) were designed. Vero cells were used to represent normal healthy cells. The cells are first cultured on biosensors and then are inoculated with natural products, Taxol (chemo drug – positive control) and DMSO (negative control). Impedances of these biosensors were then recorded at six-hour intervals for 80 hours to determine the growth of the cells. It was found that compared to Taxol, natural products has a very low toxicant values.


Nano Energy ◽  
2013 ◽  
Vol 2 (6) ◽  
pp. 1101-1106 ◽  
Author(s):  
Bo Meng ◽  
Wei Tang ◽  
Xiaosheng Zhang ◽  
Mengdi Han ◽  
Wen Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document