scholarly journals Short-term effect of PM 2.5 and O3 on non-accidental mortality and respiratory mortality in Lishui District , China

Author(s):  
Yuqi Chen ◽  
Zhigang Jiao ◽  
Ping Chen ◽  
Lijun Fan ◽  
XuDan Zhou ◽  
...  

Abstract Background In recent years, air pollution has become an imminent problem in China. Few studies have investigated the impact of air pollution on the mortality of middle-aged and elderly people. Therefore, this study aims to evaluate the impact of PM2.5 and O3 on non-accidental mortality and respiratory mortality of the middle-aged and elderly in Lishui district of China and provide the scientific basis for the prevention and control measures of air pollution. Method: Using daily mortality and atmospheric monitoring data from 2015 to 2019, we applied a generalized additive model with time-series analysis to study the association of PM2.5 and O3 exposure with daily non-accidental mortality and respiratory mortality in Lishui district of China. Using attributable risk to estimate the death burden attributable to short-term exposure to O3 and PM2.5。 Result PM2.5 and O3 were associated with non-accidental and respiratory mortality. For every 10µg/m3 increased in PM2.5, non-accidental mortality increased 0.94% (95%CI: 0.05%-1.83%), and PM2.5 had a more significant impact on women. For every 10µg/m3 increased in O3, respiratory mortality increased 1.35% (95%CI: 0.05%-2.66%). and O3 had a more significant impact on men. Compared with single pollutant model, the impact of the two-pollutant model on non-accidental mortality and respiratory mortality slightly decreased. Besides, in summer and winter, O3 had a more obvious impact on non-accidental mortality. The Population Attributable Fractions of non-accidental mortality were 0.839% (95%CI:0.004–1.626%) for PM2.5 and the PAF of respiratory mortality were 0.135% (95%CI:0.005–0.263%) for O3. Conclusion PM2.5 and O3 could significantly increase the risk of non-accidental and respiratory mortality in middle-aged and elderly people in Lishui district, China. Exposing to air pollutants, men were more susceptible to O3 damage, and women were more susceptible to PM2.5 damage.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuqi Chen ◽  
Zhigang Jiao ◽  
Ping Chen ◽  
Lijun Fan ◽  
Xudan Zhou ◽  
...  

Abstract Background In recent years, air pollution has become an imminent problem in China. Few studies have investigated the impact of air pollution on the mortality of the middle-aged and elderly people. Therefore, this study aims to evaluate the impact of PM2.5 (fine particulate matter) and O3 (ozone) on non-accidental mortality and respiratory mortality of the middle-aged and elderly people in Lishui District of Nanjing and provide the evidence for potential prevention and control measures of air pollution. Method Using daily mortality and atmospheric monitoring data from 2015 to 2019, we applied a generalized additive model with time-series analysis to evaluate the association of PM2.5 and O3 exposure with daily non-accidental mortality and respiratory mortality in Lishui District. Using the population attributable fractions to estimate the death burden caused by short-term exposure to O3 and PM2.5。. Result For every 10 μg/m3 increase in PM2.5, non-accidental mortality increased 0.94% with 95% confidence interval (CI) between 0.05 and 1.83%, and PM2.5 had a more profound impact on females than males. For every 10 μg/m3 increase in O3, respiratory mortality increased 1.35% (95% CI: 0.05, 2.66%) and O3 had a more profound impact on males than females. Compared with the single pollutant model, impact of the two-pollutant model on non-accidental mortality and respiratory mortality slightly decreased. In summer and winter as opposed to the other seasons, O3 had a more obvious impact on non-accidental mortality. The population attributable fractions of non-accidental mortality were 0.84% (95% CI:0.00, 1.63%) for PM2.5 and respiratory mortality were 0.14% (95% CI:0.01, 0.26%) for O3. For every 10 μg/m3 decrease in PM2.5, 122 (95% CI: 6, 237) non-accidental deaths could be avoided. For every 10 μg/m3 decrease in O3, 10 (95% CI: 1, 38) respiratory deaths could be avoided. Conclusion PM2.5 and O3 could significantly increase the risk of non-accidental and respiratory mortality in the middle-aged and elderly people in Lishui District of Nanjing. Exposed to air pollutants, men were more susceptible to O3 damage, and women were more susceptible to PM2.5 damage. Reduction of PM2.5 and O3 concentration in the air may have the potential to avoid considerable loss of lives.


Author(s):  
Shuqiong Huang ◽  
Hao Xiang ◽  
Wenwen Yang ◽  
Zhongmin Zhu ◽  
Liqiao Tian ◽  
...  

Tuberculosis (TB) has a very high mortality rate worldwide. However, only a few studies have examined the associations between short-term exposure to air pollution and TB incidence. Our objectives were to estimate associations between short-term exposure to air pollutants and TB incidence in Wuhan city, China, during the 2015–2016 period. We applied a generalized additive model to access the short-term association of air pollution with TB. Daily exposure to each air pollutant in Wuhan was determined using ordinary kriging. The air pollutants included in the analysis were particulate matter (PM) with an aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5), PM with an aerodynamic diameter less than or equal to 10 micrometers (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ground-level ozone (O3). Daily incident cases of TB were obtained from the Hubei Provincial Center for Disease Control and Prevention (Hubei CDC). Both single- and multiple-pollutant models were used to examine the associations between air pollution and TB. Seasonal variation was assessed by splitting the all-year data into warm (May–October) and cold (November–April) seasons. In the single-pollutant model, for a 10 μg/m3 increase in PM2.5, PM10, and O3 at lag 7, the associated TB risk increased by 17.03% (95% CI: 6.39, 28.74), 11.08% (95% CI: 6.39, 28.74), and 16.15% (95% CI: 1.88, 32.42), respectively. In the multi-pollutant model, the effect of PM2.5 on TB remained statistically significant, while the effects of other pollutants were attenuated. The seasonal analysis showed that there was not much difference regarding the impact of air pollution on TB between the warm season and the cold season. Our study reveals that the mechanism linking air pollution and TB is still complex. Further research is warranted to explore the interaction of air pollution and TB.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2518
Author(s):  
Ariana Lammers ◽  
Anne H. Neerincx ◽  
Susanne J. H. Vijverberg ◽  
Cristina Longo ◽  
Nicole A. H. Janssen ◽  
...  

Environmental factors, such as air pollution, can affect the composition of exhaled breath, and should be well understood before biomarkers in exhaled breath can be used in clinical practice. Our objective was to investigate whether short-term exposures to air pollution can be detected in the exhaled breath profile of healthy adults. In this study, 20 healthy young adults were exposed 2–4 times to the ambient air near a major airport and two highways. Before and after each 5 h exposure, exhaled breath was analyzed using an electronic nose (eNose) consisting of seven different cross-reactive metal-oxide sensors. The discrimination between pre and post-exposure was investigated with multilevel partial least square discriminant analysis (PLSDA), followed by linear discriminant and receiver operating characteristic (ROC) analysis, for all data (71 visits), and for a training (51 visits) and validation set (20 visits). Using all eNose measurements and the training set, discrimination between pre and post-exposure resulted in an area under the ROC curve of 0.83 (95% CI = 0.76–0.89) and 0.84 (95% CI = 0.75–0.92), whereas it decreased to 0.66 (95% CI = 0.48–0.84) in the validation set. Short-term exposure to high levels of air pollution potentially influences the exhaled breath profiles of healthy adults, however, the effects may be minimal for regular daily exposures.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1415.1-1415
Author(s):  
F. Ingegnoli ◽  
T. Ubiali ◽  
T. Schioppo ◽  
V. Longo ◽  
S. Iodice ◽  
...  

Background:Air pollution is believed to cause oxidative stress and systemic inflammation, that could trigger autoimmunity in rheumatoid arthritis (RA). Several epidemiological studies investigated the possible role of air pollution in the outbreak of RA with controversial results. As far as we know, studies on the effects on disease activity of short-term exposure have not been published.Objectives:To evaluate the impact of short-term exposure to air pollutants (daily mean PM10, PM2.5, NO2and O3) on disease activity in patients with RA.Methods:Consecutive patients with RA (ACR/EULAR Criteria 2010) resident in Lombardy (Italy) were enrolled. In each patient Disease Activity Score on 28 joints (DAS28), Simple Disease Activity Index (SDAI) were assessed. Daily PM10, PM2.5, NO2and O3concentrations, estimated by Regional Environmental Protection Agency at municipality resolution, were used to assign short-term exposure from day of visit back to 14 days. Multivariable linear regression models were performed to identify the day of the pollutants independently associated with disease activity indices, adjusting for the variables significant at the univariate analysis. β coefficients were reported for 1 μg/m3increments of pollutants’ concentrations.Results:422 RA patients were enrolled in the study between January and June 2018: 81.5% females, mean age 58.2±13.3 years, mean disease duration 16.1±11.5 years, 27.3% current smokers, 59.5% RF positivity, 54.5% ACPA positivity. Sparse punctual statistically significant negative associations emerged at the multivariate analysis between PM10, PM2.5, NO2and the outcomes, although with very low estimates, whereas positive associations resulted for O3.Afterwards patients were stratified in 3 subgroups according to their ongoing treatment (no therapy, n=25, conventional synthetic Disease Modifying anti-Rheumatic Drugs -DMARDs-, n=108 and biological or targeted synthetic DMARDs, n=289). A statistical significance was found by analysing the influence of therapy on the interaction between PM2.5and DAS28 (Figure below): a positive trend between PM2.5and DAS28 appeared in the first two groups (no therapy, 0.013±0.007, p=0.06 and csDMARDs, 0.006±0.004, p=0.17), whereas a statistically significant inverse association was seen in the b/tsDMARDs group (-0.005±0.002, p=0.01). Therapy interaction was particularly evident in several days before the visit also for O3.Conclusion:The changes of the outcome measures related to the increase of the pollutants’ levels did not reach the minimal clinically important difference, therefore air pollution seems barely relevant on disease activity once the loss of tolerance is established in RA. O3and PM/NO2always exhibit an opposite performance having inversely proportional atmospheric concentrations, whereas the biological role of this substance is still matter of debate and will need further understanding. Therapy seems to be able to interact with the relation between air pollutants and the parameters considered.Disclosure of Interests:Francesca Ingegnoli: None declared, Tania Ubiali: None declared, Tommaso Schioppo: None declared, Valentina Longo: None declared, Simona Iodice: None declared, Ennio Giulio Favalli Consultant of: Consultant and/or speaker for BMS, Eli-Lilly, MSD, UCB, Pfizer, Sanofi-Genzyme, Novartis, and Abbvie, Speakers bureau: Consultant and/or speaker for BMS, Eli-Lilly, MSD, UCB, Pfizer, Sanofi-Genzyme, Novartis, and Abbvie, Orazio De Lucia: None declared, Antonella Murgo: None declared, Valentina Bollati: None declared, Roberto Caporali Consultant of: AbbVie; Gilead Sciences, Inc.; Lilly; Merck Sharp & Dohme; Celgene; Bristol-Myers Squibb; Pfizer; UCB, Speakers bureau: Abbvie; Bristol-Myers Squibb; Celgene; Lilly; Gilead Sciences, Inc; MSD; Pfizer; Roche; UCB


2014 ◽  
Vol 2014 (1) ◽  
pp. 2313
Author(s):  
Auriba Raza* ◽  
Tom Bellander ◽  
Tomas Lind ◽  
Petter L.S. Ljungman ◽  
Göran Pershagen ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Mireia González-Comadran ◽  
Bénédicte Jacquemin ◽  
Marta Cirach ◽  
Rafael Lafuente ◽  
Thomas Cole-Hunter ◽  
...  

Abstract Background There is evidence to suggest that long term exposure to air pollution could be associated with decreased levels of fertility, although there is controversy as to how short term exposure may compromise fertility in IVF patients and what windows of exposure during the IVF process patients could be most vulnerable. Methods This prospective cohort study aimed to evaluate the impact of acute exposure that air pollution have on reproductive outcomes in different moments of the IVF process. Women undergoing IVF living in Barcelona were recruited. Individual air pollution exposures were modelled at their home address 15 and 3 days before embryo transfer (15D and 3D, respectively), the same day of transfer (D0), and 7 days after (D7). The pollutants modelled were: PM2.5 [particulate matter (PM) ≤2.5 μm], PMcoarse (PM between 2.5 and 10μm), PM10 (PM≤10 μm), PM2.5 abs, and NO2 and NOx. Outcomes were analyzed using multi-level regression models, with adjustment for co-pollutants and confouding factors. Two sensitivity analyses were performed. First, the model was adjusted for subacute exposure (received 15 days before ET). The second analysis was based on the first transfer performed on each patient aiming to exclude patients who failed previous transfers. Results One hundred ninety-four women were recruited, contributing with data for 486 embryo transfers. Acute and subacute exposure to PMs showed a tendency in increasing miscarriage rate and reducing clinical pregnancy rate, although results were not statistically significant. The first sensitivity analysis, showed a significant risk of miscarriage for PM2.5 exposure on 3D after adjusting for subacute exposure, and an increased risk of achieving no pregnancy for PM2.5, PMcoarse and PM10 on 3D. The second sensitivity analysis showed a significant risk of miscarriage for PM2.5 exposure on 3D, and a significant risk of achieving no pregnancy for PM2.5, PMcoarse and PM10 particularly on 3D. No association was observed for nitrogen dioxides on reproductive outcomes. Conclusions Exposure to particulate matter has a negative impact on reproductive outcomes in IVF patients. Subacute exposure seems to increase the harmful effect of the acute exposure on miscarriage and pregnancy rates. Nitrogen dioxides do not modify significantly the reproductive success.


Author(s):  
Qingquan REN ◽  
Shuyin LI ◽  
Chunling XIAO ◽  
Jiazhi ZHANG ◽  
Hong LIN ◽  
...  

Background: The aim of this study was to investigate the overall impact of PM2.5, PM10, NO2, SO2, CO, and O3 on the admission of cardiovascular and cerebrovascular disease. Methods: We collected data on cardiovascular and cerebrovascular disease admissions from two hospitals in Shenyang Liaoning, China from Jan 2014 to Dec 2017, as well as daily measurements of six pollutants at 11 sites in Shenyang. The generalized additive model was used to assess the association between daily contaminants and admission to cardiovascular and cerebrovascular disease. Results: The single-contamination model showed a significant correlation between NO2, O3, PM10 and cardiovascular and cerebrovascular diseases at lag0 day. Air pollutants had lag effects on different gender groups. Excess relative risks (ERs) associated with a 10 μg/m3 increase were 1.522(1.057, 1.988) on lag02 for NO2, 0.547% (0.367%, 0.728%), 0.133% (0.061%, 0.205%) on lag3 for O3 and PM10. The dual pollutant model showed that the effects of NO2, O3, and PM10 after adjusting the influence of other pollutants were still statistically significant. Conclusion: Short-term exposure to ambient air pollution (NO2, O3, and PM10) may be associated with an increased risk of daily cardiovascular and cerebrovascular admission, which may provide reliable evidence for further understanding of the potential adverse effects of air pollution on cardiovascular and cerebrovascular diseases.


Author(s):  
Francesca Ingegnoli ◽  
Tania Ubiali ◽  
Tommaso Schioppo ◽  
Valentina Longo ◽  
Antonella Murgo ◽  
...  

Rheumatoid arthritis (RA) flare is related to increased joint damage, disability, and healthcare use. The impact of short-term air pollution exposure on RA disease activity is still a matter of debate. In this cross-sectional study, we investigated whether short-term exposure to particulate matter (PM)10, PM2.5, nitrogen dioxide (NO2), and ozone (O3) affected RA disease activity (DAS28 and SDAI) in 422 consecutive RA residents in Lombardy, North of Italy. Air pollutant concentrations, estimated by Regional Environmental Protection Agency (Lombardy—Italy) at the municipality level, were used to assign short-term exposure from the day of enrolment, back to seven days. Some significant negative associations emerged between RA disease activity, PM10, and NO2, whereas some positive associations were observed for O3. Patients were also stratified according to their ongoing Disease-Modifying anti-Rheumatic Drugs (DMARDs) treatment: no DMARDs (n = 25), conventional synthetic DMARDs (n = 108), and biological or targeted synthetic DMARDs (n = 289). Therapy interaction seemed partially able to influence the relationship between short-term air pollution exposure and RA disease activity (PM2.5 levels and DAS28 at the day of the visit-O3 levels and disease activity scores for the seven days before the evaluation). According to our results, the impact of short-term air pollution exposure (seven days) minimally impacts disease activity. Moreover, our study suggests therapy could alter the response to environmental factors. Further evidence is needed to elucidate determinants of RA flare and its management.


2020 ◽  
Vol 9 (11) ◽  
pp. 3445
Author(s):  
Łukasz Kuźma ◽  
Emil Julian Dąbrowski ◽  
Anna Kurasz ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

The detrimental influence of air pollution on mortality has been established in a series of studies. The majority of them were conducted in large, highly polluted cities—there is a lack of studies from small, relatively clean regions. The aim was to analyze the short-term impact of particulate matters (PMs) on mortality in north-eastern Poland. Time-stratified case-crossover design was performed for mortality in years 2008–2017. Daily concentrations of PM2.5 (28.4 µg/m3, interquartile range (IQR) = 25.2) vs. (12.6 µg/m3, IQR = 9.0) and PM10 (29.0 µg/m3, IQR = 18.0) vs. (21.7 µg/m3, IQR = 14.5) were higher in Łomża than Suwałki (p < 0.001). Impact of PM2.5 on mortality was recorded in Łomża (odds ratio (OR) for IQR increase 1.061, 1.017–1.105, p = 0.06, lag 0) and Suwałki (OR for IQR increase 1.044, 1.001–1.089, p = 0.004, lag 0). PM10 had an impact on mortality in Łomża (OR for IQR increase 1.028, 1.000–1.058, p = 0.049, lag 1). Cardiovascular mortality was affected by increase of PM2.5 in Łomża (1.086, 1.020–1.156, p = 0.01) and Suwałki (1.085, 1.005–1.171, p = 0.04). PM2.5 had an influence on respiratory mortality in Łomża (1.163, 1.021–1.380, p = 0.03, lag 1). In the whole studied region, despite differences in the air quality, the influence of PMs on mortality was observed.


Sign in / Sign up

Export Citation Format

Share Document