scholarly journals Phosphorus and nitrogen co-doped carbon derived from Cigarette Filter for adsorption of methylene blue dye from aqueous solution

Author(s):  
Samantha Macchi ◽  
Zane Alsebai ◽  
Fumiya Watanabe ◽  
Arooba Ilyas ◽  
Shiraz Atif ◽  
...  

Abstract Global access to sanitary water is of utmost importance to human health. Presently, textile dye water pollution and cigarette pollution are both plaguing the environment. Herein, waste cigarette filters are converted into useful carbon-based adsorbent materials via a facile, microwave-assisted carbonization procedure. The cigarette filters are co-doped with phosphorus and nitrogen using ammonium polyphosphate to enhance their surface characteristics and adsorbent capability. The adsorbents are characterized physically to examine their surface area, elemental composition, and surface charge properties. Batch adsorption experiments were performed to determine the maximum adsorption capacity of the adsorbents. Additionally, the effects of various adsorption parameters— temperature, adsorbent dosage, pH, and time—on adsorption process were examined. The doped adsorbent showed a maximum adsorption capacity of 303.3 mg g− 1 respectively, which is three times that of the methylene blue adsorption capacity of commercially available activated carbon (~ 100 mg g− 1). Thus, the phosphorus and nitrogen co-doped carbonized waste cigarette filter adsorbent shows a profound potential as a sustainable solution to combat textile dye water pollution and cigarette filter pollution simultaneously, due to its low cost, simple preparation, and versatility in application.

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Samantha Macchi ◽  
Zane Alsebai ◽  
Fumiya Watanabe ◽  
Arooba Ilyas ◽  
Shiraz Atif ◽  
...  

AbstractGlobal access to sanitary water is of utmost importance to human health. Presently, textile dye water pollution and cigarette pollution are both plaguing the environment. Herein, waste cigarette filters (CFs) are converted into useful carbon-based adsorbent materials via a facile, microwave-assisted carbonization procedure. The CFs are activated and co-doped with phosphorus and nitrogen simultaneously to enhance their surface characteristics and adsorbent capability by introducing chemisorptive binding sites to the surface. The doped carbonized CF (DCCF) and undoped carbonized CF (CCF) adsorbents are characterized physically to examine their surface area, elemental composition, and surface charge properties. The maximum adsorption capacity of synthesized adsorbents was determined via batch adsorption experiments and Langmuir modelling. Additionally, the influence of different parameters on the adsorption process was studied by varying the adsorption conditions such as adsorbent dosage, initial concentration, contact time, temperature, and pH. The DCCF adsorbent showed a maximum adsorption capacity of 303 mg g− 1. Adsorption of both adsorbents fit best to Langmuir model and pseudo-second order kinetics, indicating chemisorptive mechanism. Both adsorbents showed endothermic adsorption process which is indicated by increasing adsorption capacity with increased temperatures. DCCF exhibited greater adsorption capability than CCF at all temperatures from 25 to 55 °C. The pH of the solution significantly affected the adsorption capacity of CCF while DCCF adsorption is favorable at a wide pH range due to low value of the adsorbent’s point of zero charge. Reusability results showed that both adsorbents can be used over several cycles for removal of dye. Thus, results conclude that the waste DCCF-based adsorbent does not only show a profound potential as a sustainable solution to combat textile dye water pollution but also addresses the valuable use of the CF pollution simultaneously. This approach, which can target two major pollutants, is attractive due to its ease of preparation, negligible cost, and versatility in application.


2020 ◽  
Vol 23 (10) ◽  
pp. 370-376
Author(s):  
Thamrin Azis ◽  
La Ode Ahmad ◽  
Keke Awaliyah ◽  
Laode Abdul Kadir

Research on the equilibrium and adsorption kinetics of methylene blue dye using tannin gel from the Tingi tree (Ceriops tagal) has been carried out. This study aims to determine the capacity and adsorption kinetics of tannin gel against methylene blue dye. Several parameters, such as the effect of contact time, pH, and methylene blue dye concentration on adsorption, were also studied. Based on the research results, the optimum adsorption process is a contact time of 30 minutes and a pH of 7. The adsorption capacity increased to a concentration of 80 mg/L with a maximum adsorption capacity (qm) of 49.261 mg/g. The adsorption process follows the pseudo-second-order adsorption kinetics model and the Langmuir isotherm model.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2554
Author(s):  
Panlong Dong ◽  
Hailin Liu ◽  
Shengrui Xu ◽  
Changpo Chen ◽  
Suling Feng ◽  
...  

To remove the pollutant methylene blue (MB) from water, a sheet-like skeleton carbon derived from shaddock peels (SPACs) was prepared by NaOH activation followed by a calcination procedure under nitrogen protection in this study. Characterization results demonstrated that the as-prepared SPACs displayed a hierarchically porous structure assembled with a thin sheet-like carbon layer, and the surface area of SPAC-8 (activated by 8 g NaOH) was up to 782.2 m2/g. The as-prepared carbon material presented an ultra-fast and efficient adsorption capacity towards MB due to its macro-mesoporous structure, high surface area, and abundant functional groups. SPAC-8 showed ultrafast and efficient removal capacity for MB dye. Adsorption equilibrium was reached within 1 min with a removal efficiency of 99.6% at an initial concentration of 100 mg/g under batch adsorption model conditions. The maximum adsorption capacity for MB was up to 432.5 mg/g. A pseudo-second-order kinetic model and a Langmuir isotherm model described the adsorption process well, which suggested that adsorption rate depended on chemisorption and the adsorption process was controlled by a monolayer adsorption, respectively. Furthermore, column adsorption experiments showed that 96.58% of MB was removed after passing through a SPAC-8 packed column with a flow rate of 20 mL/min, initial concentration of 50 mg/L, and adsorbent dosage of 5 mg. The as-prepared adsorbent displays potential value in practical applications for dye removal due to its ultrafast and efficient adsorption capacity.


2019 ◽  
Vol 41 (1) ◽  
pp. 62-62
Author(s):  
Farida Bouremmad Farida Bouremmad ◽  
Abdennour Bouchair Abdennour Bouchair ◽  
Sorour Semsari Parapari Sorour Semsari Parapari ◽  
Shalima Shawuti and Mehmet Ali Gulgun Shalima Shawuti and Mehmet Ali Gulgun

Biosorbents can be an alternative to activated carbon. They are derived from agricultural by-products or aquatic biomass. They are low cost and they may have comparable performances to those of activated carbon. The present study focuses on the characterization of the Corallina Elongata (CE) alga and its adsorption performance for Methylene Blue (MB), this alga is found in abundance at the Mediterranean coast of the city of Jijel in eastern Algeria. The dried alga was characterized using various characterization techniques such as DTA, TG, FTIR, XRD, SEM and EDX, which showed that the material consists essentially of a calcite containing magnesium. Batch adsorption studies were carried out and the effect of experimental parameters Such as pH, initial dye concentration, temperature, adsorbent dose and contact time, on the adsorption of MB was studied. The kinetic experimental data were found to conform to the pseudo-second-order model with good correlation and equilibrium data were best fitted to The Langmuir model, with a maximum adsorption capacity of 34.4 mg/g. The adsorption isotherms at various temperatures allowed the determination of certain thermodynamic parameters (ΔG, ΔH and ΔS). Finally, the adsorption results showed a good affinity between CE and MB with a high adsorption capacity.


2015 ◽  
Vol 72 (6) ◽  
pp. 896-907 ◽  
Author(s):  
S. M. Anisuzzaman ◽  
Collin G. Joseph ◽  
D. Krishnaiah ◽  
A. Bono ◽  
L. C. Ooi

In this study, durian (Durio zibethinus Murray) skin was examined for its ability to remove methylene blue (MB) dye from simulated textile wastewater. Adsorption equilibrium and kinetics of MB removal from aqueous solutions at different parametric conditions such as different initial concentrations (2–10 mg/L), biosorbent dosages (0.3–0.7 g) and pH solution (4–9) onto durian skin were studied using batch adsorption. The amount of MB adsorbed increased from 3.45 to 17.31 mg/g with the increase in initial concentration of MB dye; whereas biosorbent dosage increased from 1.08 to 2.47 mg/g. Maximum dye adsorption capacity of the durian skin was found to increase from 3.78 to 6.40 mg/g, with increasing solution pH. Equilibrium isotherm data were analyzed according to Langmuir and Freundlich isotherm models. The sorption equilibrium was best described by the Freundlich isotherm model with maximum adsorption capacity of 7.23 mg/g and this was due to the heterogeneous nature of the durian skin surface. Kinetic studies indicated that the sorption of MB dye tended to follow the pseudo second-order kinetic model with promising correlation of 0.9836 < R2 < 0.9918.


2018 ◽  
Vol 877 ◽  
pp. 13-19
Author(s):  
Bhargavi Gunturu ◽  
Geethalakshmi Ramakrishnan ◽  
Renganathan Sahadevan

In the present study, the efficiency of biosorbent derived form Pongamiapinata to remove a basic textile dye Methylene Blue from an aqueous solution was evaluated in batch system. The influence of adsorption parameters such as biosorbent dosage (0.2-1.0g/L), PH (2-10) and initial dye concentration (30-110 mg/L) on the biosorption process was studied. It was noticed that adsorbent dosage has negative effect on dye uptake, could be due to reduced mass transfer rate of dye on to adsorbent. High equilibrium uptake was observed at PH 8. However, initial dye concentration has shown linear relationship with dye uptake. As the dye concentration increases, the number of dye molecules available to be adsorbed on to adsorbent surface increases. Equilibrium isotherms for the adsorption of methylene blue was analyzed through Langmuir and Freundlich isotherm models. The data best fit with Freundlich model than Langmuir isotherm model, suggesting the adsorption was by multilayer mechanism. Maximum adsorption capacity (Q ̊) was found to be 40.49mg/g. It can be concluded from the study that the adsorbent derived from P.pinnata can be a potential low cost competent of activated carbon for textile dyes removal.


2018 ◽  
Vol 877 ◽  
pp. 26-32
Author(s):  
Bhargavi Gunturu ◽  
Geethalakshmi Ramakrishnan ◽  
Renganathan Sahadevan

Removal of a basic textile dye Methylene Blue from an aqueous solution was evaluated using biosorbent derived from Kigelia africana in a batch system. The influence of adsorption parameters such as adsorbent dosage (0.10-0.50g), PH (2-12) and initial dye concentration (0.3 to 0.11 g/L) on the adsorption process was studied. It was noticed that with increase in adsorbent dosage, the uptake capacity was decreased. Dye uptake was increased by changing the PH up to 8, further increase in PH caused reduced uptake. It was observed that, dye uptake by the adsorbent increased linearly with that of initial dye concentration. Equilibrium isotherm for the adsorption of methylene blue on to adsorbent was studied through Langmuir and Freundlich isotherm models. The data best fit with Freundlich model. Maximum adsorption capacity (Q ̊) was found to be 119.05mg/g. SEM and FTIR analyses of the adsorbent was performed before and after the adsorption, suggest that adsorption of the dye was through chemical interaction of the functional groups on the surface of the adsorbent. From the experimental results, it was inferred that biosorbent derived from Kigelia africana can be a potential alternate to activated carbon for textile dyes removal.


2021 ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

Abstract In the present work, we modified ZSM-5 zeolite using a bio polymer poly (diallyl dimethyl ammonium chloride) and employed it for the removal of cationic dye, methylene blue from aqueous solution. The chemical and physical properties of the modified ZSM-5 zeolite were investigated using XRD, FTIR, SEM, TEM, nitrogen adsorption, TGA and 27Al NMR. Modified ZSM-5 zeolite possesses high surface area and pore diameter which was confirmed from SEM, TEM and nitrogen adsorption analysis. Adsorption of methylene blue on zeolite was investigated by batch adsorption technique. The effect of different parameters such as zeolite dosage, initial methylene blue concentration, temperature, pH and contact time on the adsorption process was discussed. Maximum adsorption capacity (4.31 mg/g) was achieved using 0.1g of modified ZSM-5 zeolite at the optimum conditions (initial dye concentration: 10 mg/L, pH: 10, temperature:30oC and contact time: 300 min). The experimental data were fitted into Langmuir and Freundlich models and the results indicate that the adsorption process followed Freundlich isotherm. Kinetic data were investigated using pseudo-first-order and pseudo-second-order models. Kinetic analysis indicates that pseudo-second-order model is more suitable to describe adsorption of MB on modified ZSM-5 zeolite. The reusability test suggests that the adsorbent could be reused at least six times without significant loss in removal efficiency.


2021 ◽  
Author(s):  
Ali H. Jawad ◽  
Rangabhashiyam S ◽  
Ahmed Saud Abdulhameed ◽  
Syed Shatir A. Syed-Hassan ◽  
Zeid A. ALOthman ◽  
...  

Abstract A new biocomposite magnetic crosslinked glutaraldehyde-chitosan/MgO/Fe3O4 (CTS-GL/MgO/Fe3O4) adsorbent was prepared and applied for the removal of reactive blue 19 (RB 19) synthetic textile dye. The prepared CTS-GL/MgO/Fe3O4 was subjected to the several instrumental characterizations such as XRD, FTIR, SEM-EDX, pH-potentiometric titration, and pHpzc analyses. The influence of the input adsorption parameters such as A: CTS-GL/MgO/Fe3O4 dosage, B: initial solution pH, C: process temperature, and D: contact time on RB 19 removal efficiency was statistically optimized using Box-Behnken design (BBD). The analysis of variance (ANOVA) indicates the presence of five significant statistical interactions between input adsorption parameters i.e. (AB, AC, AD, BC, and BD). The adsorption kinetic and equilibrium study reveals a good to the pseudo-second-order model, and multilayer adsorption as proven by Freundlich isotherm model, respectively. The maximum adsorption capacity of CTS-GL/MgO/Fe3O4 towards RB19 was found to be 193.2 mg/g at 45 ºC. This work highlights the development of feasible and recoverable magnetic biocompsite adsorbent with desirable adsorption capacity towards textile dyes with good separation ability by using an external magnetic field.


2018 ◽  
Vol 43 (1) ◽  
pp. 48 ◽  
Author(s):  
Alice Santos Caldeira ◽  
José Domingos Fabris ◽  
David Lee Nelson ◽  
Sandra Matias Damasceno

The textile industries face difficulties in removing dyes from the liquid effluent, even after what is thought to be conventional cleaning treatments. The use of adsorbents to retain dyes in textile effluents has been showing to be a simple and promisingly efficient method. The objective of this research was to test the macaúba (Acrocomia aculeata) kernel cake as adsorbent to remove Remazol Brilliant Blue dye in batch adsorption tests. The obtained adsorption kinetic data at equilibrium were modeled by assuming both the Langmuir and the Freundlich isotherms. The values were better fitted with the Langmuir model (R2 = 0.983), with a maximum adsorption capacity of 3.5 mg g-1 monolayer. This essay showed that the macaúba cake is an effective adsorbent to remove Remazol Brilliant Blue textile dye and it is a good alternative for treatment of textile liquid effluents.


Sign in / Sign up

Export Citation Format

Share Document