scholarly journals Multifaceted Phytogenic Silver Nanoparticles by a Rare Insectivorous Plant Drosera Spatulata Labill Var.bakoensis and its Enhanced Antioxidant, Antibacterial, Antifungal and in Vitro Cytotoxic Studies

Author(s):  
Susmila Aparna Gaddam ◽  
Venkata Subbaiah Kotakadi ◽  
Gunasekhar. Kalavakunta ◽  
Josthna Penchalaneni ◽  
Varadarajulu Naidu Challagundla ◽  
...  

Abstract The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var.bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of their high negative zeta potential (-34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susmila Aparna Gaddam ◽  
Venkata Subbaiah Kotakadi ◽  
Gunasekhar Kalavakunta Subramanyam ◽  
Josthna Penchalaneni ◽  
Varadarajulu Naidu Challagundla ◽  
...  

AbstractThe current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (− 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 473
Author(s):  
Prabu Kumar Seetharaman ◽  
Rajkuberan Chandrasekaran ◽  
Rajiv Periakaruppan ◽  
Sathishkumar Gnanasekar ◽  
Sivaramakrishnan Sivaperumal ◽  
...  

To develop a benign nanomaterial from biogenic sources, we have attempted to formulate and fabricate silver nanoparticles synthesized from the culture filtrate of an endophytic fungus Penicillium oxalicum strain LA-1 (PoAgNPs). The synthesized PoAgNPs were exclusively characterized through UV–vis absorption spectroscopy, Fourier Transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), and Transmission Electron Microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX). The synthesized nanoparticles showed strong absorbance around 430 nm with surface plasmon resonance (SPR) and exhibited a face-centered cubic crystalline nature in XRD analysis. Proteins presented in the culture filtrate acted as reducing, capping, and stabilization agents to form PoAgNPs. TEM analysis revealed the generation of polydispersed spherical PoAgNPs with an average size of 52.26 nm. The PoAgNPs showed excellent antibacterial activity against bacterial pathogens. The PoAgNPs induced a dose-dependent cytotoxic activity against human adenocarcinoma breast cancer cell lines (MDA-MB-231), and apoptotic morphological changes were observed by dual staining. Additionally, PoAgNPs demonstrated better larvicidal activity against the larvae of Culex quinquefasciatus. Moreover, the hemolytic test indicated that the as-synthesized PoAgNPs are a safe and biocompatible nanomaterial with versatile bio-applications.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1596 ◽  
Author(s):  
Yi Ma ◽  
Yunhui Feng ◽  
Wanling Zeng ◽  
Huibo Luo

This study aimed to investigate the antioxidant activity and release behavior of anthocyanin (ANC) loaded within FA-g-MD wall (ANC-FA-g-MD microcapsule) in vitro. The microencapsulation of ANC was prepared by spray drying and displayed a biphasic release profile. The combination of ANC and FA-g-MD (0.0625–1 mg/mL) showed a higher antioxidant activity than that of both individuals. A possible intermolecular interaction between ANC and FA-g-MD was studied by UV-vis spectra. Intracellular reactive oxygen species (ROS), 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test, and protein expression of quinone oxidoreductase 1(NQO1), glutathione reductase (GSR) and γ-glutamate cysteine ligase catalytic subunit (γ-GCLC) were measured through human colon cancer cells (HT-29). After a 24-hour incubation of the HT-29, the combinations (0–60 μg/mL) exhibited a high potential to diminish the ROS level. And the distinct upregulated expressions of GCLC and NQO1 of HT-29 were detected after treatment with combinations compared to those of single ones. These results suggested that the ANC-FA-g-MD microcapsules exerts enhanced antioxidant effect with capability of the modulation of GCLC and NQO1.


2021 ◽  
Vol 37 (5) ◽  
pp. Kanmani-R
Author(s):  
Kanmani R ◽  
IrudayaIrin Scleeva P

This research work was mainly focused to study the anti-oxidant and anti-diabetic activities of biologically synthesis of silver nanoparticles (AgNPs) from the flaxseed extract of Linumusitassimum. Qualitative tests identify the presence of phytochemicals in the flaxseed extract and its results showed the presence of tannins, terpenoids, saponins, flavonoids, steroids, cardiac glycosides, anthraquinones, coumarins, xanthoproteins, alkaloids, emodins, and carbohydrate in it. Preliminarily AgNPs formation is confirmed by the UV spectra and it showed maximum adsorption band at 438nm. FT-IR spectroscopic studies reveal the Phyto-constituents which are involved in the reduction of silver (Ag+1) into silver nanoparticles (Ag0). The spherical shapes of AgNPs are observed with crystalline nature are found in the aid of SEM and XRD analysis. Synthesized AgNPs have the maximum percentage of a silver element which is examined by the EDX analysis. The in-vitro antioxidant and antidiabetic activities of L. usitatissimummediated AgNPs were analyzed by using the DPPH, alpha-amylase, and alpha glycosides assays respectively. The DPPH result shows that the AgNPs possess 59.01% of radical scavenging property and the standard ascorbic acid reveals 48.63% at 100µg/ml concentration. Similarly in anti-diabetic activity, AgNPs shows the maximum inhibition of 79.84% in the alpha-amylase assay, and for alpha-glucosidase, AgNPs showed 58.86% at 100µg/ml concentration.


2022 ◽  
Vol 12 (2) ◽  
pp. 887
Author(s):  
Ana Flavia Burlec ◽  
Monica Hăncianu ◽  
Irina Macovei ◽  
Cornelia Mircea ◽  
Adrian Fifere ◽  
...  

The present study reports an eco-friendly synthesis method of silver nanoparticles (AgNPs) using two different extracts (aqueous and ethanolic) of Tagetes erecta flowers. When exposed to different biocompounds found in the plant, silver ions are reduced, thus, resulting in the green synthesis of nanoparticles. After performing the optimization of synthesis, the obtained AgNPs were characterized using various techniques. The UV–Vis spectrum of the synthesized nanoparticles showed maximum peaks at 410 and 420 nm. TEM analysis revealed that the particles were spherical with a size ranging from 10 to 15 nm, and EDX analysis confirmed the presence of silver metal. The average diameter value obtained through DLS analysis for the two types of AgNPs (obtained using aqueous and ethanolic extracts) was 104 and 123 nm. The Zeta potentials of the samples were −27.74 mV and −26.46 mV, respectively, which indicates the stability of the colloidal solution. The antioxidant and antimicrobial activities assays showed that nanoparticles obtained using the aqueous extract presented enhanced antioxidant activity compared to the corresponding extract, with both types of AgNPs exhibiting improved antifungal properties compared to the initial extracts.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4355
Author(s):  
Rijuta Ganesh Saratale ◽  
Ganesh Dattatraya Saratale ◽  
Somin Ahn ◽  
Han-Seung Shin

In nanoscience, the “green” synthesis approach has received great interest as an eco-friendly and sustainable method for the fabrication of a wide array of nanoparticles. The present study accounts for an expeditious technique for the synthesis of silver nanoparticles (AgNPs) utilizing fruit waste grape pomace extracted tannin. Grape pomace tannin (Ta) involved in the reduction and capping of AgNPs and leads to the formation of stable Ta-AgNPs. Various conditions were attempted to optimize the particle size and morphology of Ta-AgNPs which was further analyzed using various analytical tools for different characteristic motives. UV-visible spectroscopy showed a characteristic peak at 420 nm, indicating successful synthesis of AgNPs. Energy disperses spectroscopy (EDS) analysis proved the purity of the produced Ta-AgNPs and manifested a strong signal at −2.98 keV, while Fourier-transform infrared spectrophotometer (FTIR) spectra of the Ta-AgNPs displayed the existence of functional groups of tannin. Zeta potential measurements (−28.48 mV) showed that the Ta-AgNPs have reasonably good stability. High resolution transmission electron microscopy (HR-TEM) analysis confirmed the average dimension of the synthesized NPs was estimated about 15–20 nm. Ta-AgNPs potentials were confirmed by in vitro antidiabetic activity to constrain carbohydrate digesting enzymes, mainly α-amylase and α-glucosidase, with a definite concentration of sample displaying 50% inhibition (IC50), which is about 43.94 and 48.5 μg/mL, respectively. Synthesized Ta-AgNPs exhibited significant antioxidant potential with respect to its 2,2′-azino-bis(3-ethylbenzothi-azoline-6-sulfonic acid) (ABTS) (IC50 of 40.98 µg/mL) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 of 53.98 µg/mL) free radical scavenging activities. Ta-AgNPs exhibited extraordinary antibacterial activity against selected pathogenic strains and showed comparable antimicrobial index against ampicillin as a positive control.


2012 ◽  
Vol 23 ◽  
pp. iv85-iv86
Author(s):  
Ying Lin ◽  
Yuan-yuan Fang ◽  
Hong Su ◽  
Zhou Hui-Min ◽  
Qi-Kui Chen

2005 ◽  
Vol 15 (17) ◽  
pp. 3930-3933 ◽  
Author(s):  
Rosaria Ottanà ◽  
Stefania Carotti ◽  
Rosanna Maccari ◽  
Ida Landini ◽  
Giuseppa Chiricosta ◽  
...  

2021 ◽  
Author(s):  
Jelena S. Katanić Stanković ◽  
◽  
Nikola Srećković ◽  
Vladimir Mihailović

In this study, silver nanoparticles (AgNPs) have been synthesized using the aqueous extract of the aerial parts of B. purpurocaerulea, collected in Serbia. B. purpurocaerulea silver nanoparticles (Bp– AgNPs) synthesis was confirmed using UV-Vis spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The biological potential of synthesized Bp-AgNPs was evaluated in vitro using ABTS assay for determining free radical scavenging potential and microdilution method for analysis of antimicrobial properties. Bp-AgNPs showed high antioxidant activity similar to Bp-extract, comparable to BHT. The synthesized nanoparticles exerted remarkable antibacterial effects, with minimal inhibitory concentration (MIC) values below 20 µg/mL. In the case of some bacterial strains, the results of Bp– AgNPs were comparable or similar to standard antibiotic erythromycin. The antifungal activity of Bp– AgNPs was moderate for most of the used strains. Nevertheless, several fungi were resistant to the NPs action, while two tested Penicillium species were extremely sensitive on Bp-AgNPs with MIC lower than 40 µg/mL. The antimicrobial properties of Bp-AgNPs can be useful for the development of new NPs-containing products.


Sign in / Sign up

Export Citation Format

Share Document