scholarly journals Fabrication and optimization of bio-silver nanoparticles: Activity evaluation against beta-lactamases-resistant Enterococcus faecalis

Author(s):  
Bikhal Fattah ◽  
Huner Arif ◽  
Haider Mousa

Abstract Objectives: Due to the presence of antibiotic-resistant genes, treatment options of clinical isolates are exceedingly limited. This study was aimed to fabricate, optimize, characterize, and evaluate the action of silver nanoparticles (AgNPs) against a clinical isolate of Enterococcus faecalis.Materials and Methods: A combination of cell-free supernatant (C-FS) of the filamentous fungus Fusarium solani and Gram-negative Comamonas aquatica for AgNPs formation was proposed; the antigrowth and antibiofilm of AgNPs against E. faecalis harboring blaTEM and blaCTX-M genes were assessed. Results: The ratio of 1:2 v/v (C-FS:AgNO3) at pH 9.0 for 72 h in 1 mM AgNO3 were the optimal conditions for AgNPs formation. UV-vis absorption peak appeared at 425 nm and the crystalline nature of synthesized particles was verified by X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the interaction of protein molecules with the AgNPs. Transmission electron microscopy (TEM) analysis demonstrated that fabricated AgNPs were relatively monodispersed, approximately spherical, and of size 2-7.5 nm. blaTEM and blaCTX-M were detected in E. faecalis; the growth and biofilm of E. faecalis were significantly decreased by the action of 12.5 µg/ml AgNPs. Conclusions: This is the first study proposing alternative sources to form AgNPs via synergistic metabolites of F. solani and C. aquatica. The results here offer a foundation for developing an effective therapy using AgNPs against clinical pathogens.

2021 ◽  
Author(s):  
Bikhal Fattah ◽  
Huner Arif ◽  
Haider Hamzah

Abstract Due to the presence of antibiotic-resistant genes, treatment options of clinical isolates are exceedingly limited. This study was aimed to fabricate, optimize, characterize, and evaluate the action of silver nanoparticles (AgNPs) against a clinical isolate of Enterococcus faecalis. A combination of cell-free supernatant (C-FS) of the filamentous fungus Fusarium solani and Gram-negative Comamonas aquatica for AgNPs formation was proposed; the antigrowth and antibiofilm of AgNPs against E. faecalis harboring blaTEM and blaCTX-M genes were assessed. The ratio of 1:2 v/v (C-FS:AgNO3) at pH 9.0 for 72 h in 1 mM AgNO3 were the optimal conditions for AgNPs formation. UV-vis absorption peak appeared at 425 nm and the crystalline nature of synthesized particles was verified by X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the interaction of protein molecules with the AgNPs. Transmission electron microscopy (TEM) analysis demonstrated that fabricated AgNPs were relatively monodispersed, approximately spherical, and of size 2-7.5 nm. blaTEM and blaCTX-M were detected in E. faecalis; the growth and biofilm of E. faecalis were significantly decreased by the action of 12.5 µg/mL AgNPs. This is the first study proposing alternative sources to form AgNPs via synergistic metabolites of F. solani and C. aquatica. The results here offer a foundation for developing an effective therapy using AgNPs against clinical pathogens.


Marine Drugs ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 38 ◽  
Author(s):  
Maria Sindhura John ◽  
Joseph Amruthraj Nagoth ◽  
Kesava Priyan Ramasamy ◽  
Alessio Mancini ◽  
Gabriele Giuli ◽  
...  

The synthesis of silver nanoparticles (AgNPs) by microorganisms recently gained a greater interest due to its potential to produce them in various sizes and morphologies. In this study, for AgNP biosynthesis, we used a new Pseudomonas strain isolated from a consortium associated with the Antarctic marine ciliate Euplotes focardii. After incubation of Pseudomonas cultures with 1 mM of AgNO3 at 22 °C, we obtained AgNPs within 24 h. Scanning electron (SEM) and transmission electron microscopy (TEM) revealed spherical polydispersed AgNPs in the size range of 20–70 nm. The average size was approximately 50 nm. Energy dispersive X-ray spectroscopy (EDS) showed the presence of a high intensity absorption peak at 3 keV, a distinctive property of nanocrystalline silver products. Fourier transform infrared (FTIR) spectroscopy found the presence of a high amount of AgNP-stabilizing proteins and other secondary metabolites. X-ray diffraction (XRD) revealed a face-centred cubic (fcc) diffraction spectrum with a crystalline nature. A comparative study between the chemically synthesized and Pseudomonas AgNPs revealed a higher antibacterial activity of the latter against common nosocomial pathogen microorganisms, including Escherichia coli, Staphylococcus aureus and Candida albicans. This study reports an efficient, rapid synthesis of stable AgNPs by a new Pseudomonas strain with high antimicrobial activity.


2021 ◽  
Author(s):  
Bikhal Fattah ◽  
Huner Arif ◽  
Haider Hamzah

Abstract The rate at which nosocomial infections have spread throughout the globe has been alarming. Therefore, the data presented here sheds light on some aspects of AgNPs as promising anti-infective therapy. However, knowledge on the safe usage of AgNPs in the field of medicine is necessary to investigate. AgNPs synthesis, optimization, characterization, and mode of action against Enterococcus faecalis have been studied in this paper. We propose a combination of cell-free supernatant (C-FS) of the intimate organisms; Fusarium solani and Comamonas aquatica as synthesis catalysts. The optimization findings were at pH 9.0 for 72 h in 1 mM AgNO3 using 1:2 v/v (C-FS : AgNO3). UV-vis absorption peak appeared at 425 nm and the crystalline nature of synthesized particles was verified by XRD. FTIR analysis confirmed the presence of protein molecules that acted as reducing and stabilizing agents. Energy-dispersive X-ray analysis exhibited an intense peak at 3 KeV, confirming the formation of AgNPs. Further, FE-SEM images prove AgNPs synthesis. TEM and AFM analysis demonstrated that fabricated AgNPs were relatively monodispersed, approximately spherical, and of size 2-7.5 nm. The growth and biofilm of nosocomial E. faecalis were significantly decreased by the action of AgNPs. Furthermore, antibiotic resistance genes, blaTEM, and blaCTX, were detected in E. faecalis; both genes were degraded enormously via 9 % AgNPs. This is the first study proposing alternative sources to form AgNPs via synergistic metabolites of F. solani and C. aquatica. The results here offer a foundation for developing an effective therapy using AgNPs against nosocomial pathogens.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Abdullah A. Alarfajj ◽  
Mohammedsaleh Almallahi ◽  
Murugan A. Munusamy ◽  
Mickymaray Suresh ◽  
Wael Alturaiki

Extended-spectrum beta-lactamases (ESBL) are enzymes produced by E. coli like some gram negative bacteria. The patients who are affected by ESBL producing bacteria facing a major problem and they may need different β- lactam antibiotics to treat the infection. But this extensive use of β- lactam antibiotics against ESPLs creating major public health threat.  As an alternative currently many eco- friendly, non-toxic, low cost nanoparticles are synthesizing by biogenic way used as an alternative for the β- lactam antibiotics. In the present study silver nanoparticles (AgNPs) were synthesized using Ayurveda Toothpowder. The synthesized AgNPs were characterized using ultraviolet (UV)-visible (vis) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscope (TEM) analysis and finally the antibacterial activity was performed against ESBL producing bacteria by well diffusion method. Antibacterial tests against ESPL producing E.coli cells using biogenic synthesized AgNPs showed significant antibacterial effect at low concentration of AgNPs. The results proved that the biogenic synthesised nanoparticles using Toothpowder extract would help to arrest ESBL producing bacteria a


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Palem Ramasubba Reddy ◽  
Shimoga D. Ganesh ◽  
Nabanita Saha ◽  
Oyunchimeg Zandraa ◽  
Petr Sáha

Bioreduction of silver ions following one pot process is described to achieveRheum rhabarbarum(RR) based silver nanoparticles (SNPs) which is termed as “RR-SNPs.” The Ultraviolet–visible spectroscopy (UV–vis) confirms the characteristic surface plasmon resonance band for RR-SNPs in the range of 420–460 nm. The crystalline nature of SNPs was confirmed by X-ray diffraction (XRD) peaks at 38.2°, 45.6°, 64.2°, and 76.8°. Transmission electron microscopy (TEM) and scanning electronic microscopy (SEM) confirm the shape of synthesized SNPs. They are roughly spherical but uniformly distributed, and size varies from 60 to 80 nm. These biogenic SNPs show persistent zeta potential value of 34.8 mV even after 120 days and exhibit potent antibacterial activity in presence ofEscherichia coli(CCM 4517) andStaphylococcus aureus(CCM 4516). In addition, cytotoxicity of RR-SNPs againstin vitrohuman epithelial carcinoma (HeLa) cell line showed a dose-response activity. The lethal concentration (LC50) value was found to be 28.5 μg/mL for RR-SNPs in the presence of HeLa cells. These findings help us to evaluate their appropriate applications in the field of nanotechnology and nanomedicine.


2020 ◽  
Vol 32 (9) ◽  
pp. 2229-2232
Author(s):  
TANVEER ALAM ◽  
SAPNA TYAGI ◽  
GOUTAM KUMAR ◽  
AZHAR KHAN ◽  
NEHA CHAUHAN ◽  
...  

Silver nanoparticles (AgNPs) have received significant attention due to their distinctive antimicrobial, anticancer, catalytic and photochemical activity. The objective of this work is to amalgamate silver nanoparticles from the aqueous extract of Biamarckia nobilis seeds using green method, characterization using UV-visible spectroscopy, X-ray diffraction, transmission electron microscopy and FTIR spectroscopy. Further, its antimicrobial and anticancer activities were evaluated. The results displayed the characteristic UV peak, cubic phase with crystalline nature, spherical in shape having average size 14 nm, prominent peaks of bio-functional groups, good antimicrobial and anticancer activities.


2018 ◽  
Vol 34 (6) ◽  
pp. 2895-2901
Author(s):  
Gusliani Eka Putri ◽  
Syukri Arief ◽  
Novesar Jamarun ◽  
Feni Rahayu Gusti ◽  
Annisa Novita Sary

Silver-cerium nanoparticles had been successfully synthesized using the sol-gel method by silver nitrate as a source of silver and cerium nitrate hexahydrate as a source of cerium. The synthesized silver-cerium nanoparticles had been characterized by X-ray diffraction,transmission electron microscopy, and scanning electron microscopy-energy dispersive X-ray. Based on the results of XRD and TEM analysis showed silver-cerium nanoparticles were spherical with the dominant size range of 8.9 -12.73 nm. SEM-EDX analysis showed silver nanoparticles covered by cerium nanoparticles that were known as the core-shell structure. Silver nanoparticles doped with cerium nanoparticles (CeONP) showed an increase in inhibitory with an increase a zone of inhibition after being doped with cerium nanoparticles. The disinfection effect of Ag-doped CeONP was more pronounced on Staphylococcus aureus than Escherichia coli, although the difference was not wide.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2326
Author(s):  
Entesar Ali Ganash ◽  
Reem Mohammad Altuwirqi

In this work, silver nanoparticles (Ag NPs) were synthesized using a chemical reduction approach and a pulsed laser fragmentation in liquid (PLFL) technique, simultaneously. A laser wavelength of 532 nm was focused on the as produced Ag NPs, suspended in an Origanum majorana extract solution, with the aim of controlling their size. The effect of liquid medium concentration and irradiation time on the properties of the fabricated NPs was studied. While the X-ray diffraction (XRD) pattern confirmed the existence of Ag NPs, the UV–Vis spectrophotometry showed a significant absorption peak at about 420 nm, which is attributed to the characteristic surface plasmon resonance (SPR) peak of the obtained Ag NPs. By increasing the irradiation time and the Origanum majora extract concentration, the SPR peak shifted toward a shorter wavelength. This shift indicates a reduction in the NPs’ size. The effect of PLFL on size reduction was clearly revealed from the transmission electron microscopy images. The PLFL technique, depending on experimental parameters, reduced the size of the obtained Ag NPs to less than 10 nm. The mean zeta potential of the fabricated Ag NPs was found to be greater than −30 mV, signifying their stability. The Ag NPs were also found to effectively inhibit bacterial activity. The PLFL technique has proved to be a powerful method for controlling the size of NPs when it is simultaneously associated with a chemical reduction process.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Hernane S. Barud ◽  
Thaís Regiani ◽  
Rodrigo F. C. Marques ◽  
Wilton R. Lustri ◽  
Younes Messaddeq ◽  
...  

Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by“in situ”preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and absorption in the UV-Visible (350 nm to 600 nm). Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.


2021 ◽  
Vol 891 ◽  
pp. 111-115
Author(s):  
Maradhana Agung Marsudi ◽  
Farah Fitria Sari ◽  
Pandu Mauliddin Wicaksono ◽  
Adinda Asmoro ◽  
Arif Basuki ◽  
...  

In this work, silver nanoparticles have been successfully synthesized using simple and environmentally friendly ‘green synthesis’ method using Indonesian wild honey as mediator. Particle count and size can be optimized by varying the silver nitrate precursor and honey concentration, with the help of sodium hydroxide as pH regulator. Based on X-ray diffraction (XRD) result, crystalline structure of Ag has been confirmed in sample with impurities from AgCl. Based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) results, it was found that the smallest average particles size of AgNPs (117.5 nm from DLS and 11.1 nm from TEM) was obtained at sample with 5% w/v of honey and 0.5 mM of AgNO3.


Sign in / Sign up

Export Citation Format

Share Document