scholarly journals Dabigatran and Remdesivir Synergistically Inhibit Coronavirus Replication

Author(s):  
Alfred D. Nelson ◽  
Yan Bi ◽  
Baoan Ji

Abstract Background & Aims: Coronavirus-19 (COVID-19) due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) is an ongoing global pandemic causing more than three million deaths. Protease inhibitors had been shown to decrease viral entry. However, the role of dabigatran, an inhibitor of multiple proteases, on coronavirus remains unknown.Methods: MRC-5 cells, HCT-8, or Huh-7 cells were infected with Beta-coronavirus OC43 and SARS-CoV-2. Cytopathic effects (CPE) were monitored by imaging. Viral load was measured by quantitative RT-PCR. Viral protein was detected by Western blot.Results: Camostat, a serine protease inhibitor, had no effect on the replication of OC43 and SARS CoV-2 even at higher doses. Dabigatran inhibited replication, viral entry and CPE of OC43 in a dose-dependent manner. Dabigatran and Remdisivir synergistically inhibited OC43 virus replication. Conclusions: Dabigatran may be beneficial in treating SARS-CoV-2 both for anticoagulation and viral replication inhibition need to be evaluated further.

1976 ◽  
Vol 54 (4) ◽  
pp. 622-625 ◽  
Author(s):  
D. Frankel ◽  
H. Kalant ◽  
J. M. Khanna ◽  
A. E. LeBlanc

The possible role of the adrenergic nervous system in the intoxicant effects of ethanol was examined in studies of the interaction of propranolol and phentolamine with ethanol. Propranolol tended to increase the effect of lower doses of ethanol in a dose-dependent manner. However, the effect of higher doses of ethanol (over 2.0 g/kg) tended to be diminished by low doses of propranolol, whereas higher doses of propranolol were ineffective or actually increased the ethanol effect. Phentolamine tended to decrease the effect of the lower ethanol doses. These findings are inconsistent with any simple adrenergic mechanism in the mediation of the intoxicant effect of ethanol.


1996 ◽  
Vol 271 (2) ◽  
pp. R333-R338 ◽  
Author(s):  
T. E. Scammell ◽  
J. K. Elmquist ◽  
C. B. Saper

The labile gas nitric oxide (NO) mediates a wide variety of thermoregulatory processes including vasomotor control, brown fat thermogenesis, and neuroendocrine regulation. Additionally, during endotoxemia, NO modulates the release of cytokines and hypothalamic peptides. To determine the role of NO in thermoregulation and fever, we intravenously injected the NO synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) and measured its effects on body temperature during normal thermoregulation and endotoxemia in awake, unrestrained rats. L-NAME produced a stereoselective, dose-dependent hypothermia that lasted up to 4 h after bolus intravenous injection. Intravenous lipopolysaccharide (LPS) produced fever in a dose-dependent manner, which was preceded by hypothermia at higher doses alpha-LPS. NOS inhibition reduced the febrile response to LPS and produced marked hypothermia with a low dose of LPS. These findings indicate that NO may play an important role in thermoregulation and suggest that NO is required for the production of fever.


2021 ◽  
Vol 11 ◽  
Author(s):  
Taizhen Liang ◽  
Jiayin Qiu ◽  
Xiaoge Niu ◽  
Qinhai Ma ◽  
Chenliang Zhou ◽  
...  

The global spread of the novel coronavirus SARS-CoV-2 urgently requires discovery of effective therapeutics for the treatment of COVID-19. The spike (S) protein of SARS-CoV-2 plays a key role in receptor recognition, virus-cell membrane fusion and virus entry. Our previous studies have reported that 3-hydroxyphthalic anhydride-modified chicken ovalbumin (HP-OVA) serves as a viral entry inhibitor to prevent several kinds of virus infection. Here, our results reveal that HP-OVA can effectively inhibit SARS-CoV-2 replication and S protein-mediated cell-cell fusion in a dose-dependent manner without obvious cytopathic effects. Further analysis suggests that HP-OVA can bind to both the S protein of SARS-CoV-2 and host angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and disrupt the S protein-ACE2 interaction, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that HP-OVA can serve as a potential therapeutic agent for the treatment of deadly COVID-19.


2019 ◽  
Vol 17 (4) ◽  
pp. 426-431
Author(s):  
Jin Xuezhu ◽  
Li Jitong ◽  
Nie Leigang ◽  
Xue Junlai

The main purpose of this study is to investigate the role of citrus leaf extract in carbon tetrachloride-induced hepatic injury and its potential molecular mechanism. Carbon tetrachloride was used to construct hepatic injury animal model. To this end, rats were randomly divided into 4 groups: control, carbon tetrachloride-treated, and two carbon tetrachloride + citrus leaf extract-treated groups. The results show that citrus leaf extract treatment significantly reversed the effects of carbon tetrachloride on the body weight changes and liver index. Besides, treatment with citrus leaf extract also reduced the levels of serum liver enzymes and oxidative stress in a dose-dependent manner. H&E staining and western blotting suggested that citrus leaf extract could repair liver histological damage by regulating AMPK and Nrf-2.


1997 ◽  
Vol 273 (5) ◽  
pp. E880-E890 ◽  
Author(s):  
Wenhan Chang ◽  
Tsui-Hua Chen ◽  
Stacy A. Pratt ◽  
Benedict Yen ◽  
Michael Fu ◽  
...  

Parathyroid cells express Ca2+-conducting cation currents, which are activated by raising the extracellular Ca2+ concentration ([Ca2+]o) and blocked by dihydropyridines. We found that acetylcholine (ACh) inhibited these currents in a reversible, dose-dependent manner (50% inhibitory concentration ≈10−8 M). The inhibitory effects could be mimicked by the agonist (+)-muscarine. The effects of ACh were blunted by the antagonist atropine and reversed by removing ATP from the pipette solution. (+)-Muscarine enhanced the adenosine 3′,5′-cyclic monophosphate (cAMP) production by 30% but had no effect on inositol phosphate accumulation in parathyroid cells. Oligonucleotide primers, based on sequences of known muscarinic receptors (M1-M5), were used in reverse transcriptase-polymerase chain reaction (RT-PCR) to amplify receptor cDNA from parathyroid poly (A)+ RNA. RT-PCR products displayed >90% nucleotide sequence identity to human M2- and M4-receptor cDNAs. Expression of M2-receptor protein was further confirmed by immunoblotting and immunocytochemistry. Thus parathyroid cells express muscarinic receptors of M2 and possibly M4 subtypes. These receptors may couple to dihydropyridine-sensitive, cation-selective currents through the activation of adenylate cyclase and ATP-dependent pathways in these cells.


2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


1990 ◽  
Vol 123 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Xiangbing Wang ◽  
Noriyuki Sato ◽  
Monte A. Greer ◽  
Susan E. Greer ◽  
Staci McAdams

Abstract. The mechanism by which 30% medium hyposmolarity induces PRL secretion by GH4C1 cells was compared with that induced by 100 nmol/l TRH or 30 mmol/l K+. Removing medium Ca2+, blocking Ca2+ channels with 50 μmol/l verapamil, or inhibiting calmodulin activation with 20 μmol/l trifluoperazine, 10 μmol/l chlorpromazine or 10 μmol/l pimozide almost completely blocked hyposmolarity-induced secretion. The smooth muscle relaxant, W-7, which is believed relatively specific in inhibiting the Ca2+-calmodulin interaction, depressed hyposmolarity-induced PRL secretion in a dose-dependent manner (r = −0.991, p<0.01 ). The above drugs also blocked or decreased high K+-induced secretion, but had much less effect on TRH-induced secretion. Secretion induced by TRH, hyposmolarity, or high K+ was optimal at pH 7.3-7.65 and was significantly depressed at pH 6.0 or 8.0, indicating that release of hormone induced by all 3 stimuli is due to an active cell process requiring a physiologic extracellular pH and is not produced by nonspecific cell toxicity. The data suggest hyposmolarity and high K+ may share some similarities in their mechanism of stimulating secretion, which is different from that of TRH.


Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 752-762 ◽  
Author(s):  
Alireza Sameny ◽  
John Locke

Transposable elements are found in the genomes of all eukaryotes and play a critical role in altering gene expression and genome organization. In Drosophila melanogaster, transposable P elements are responsible for the phenomenon of hybrid dysgenesis. KP elements, a deletion-derivative of the complete P element, can suppress this mutagenic effect. KP elements can also silence the expression of certain other P-element-mediated transgenes in a process called P-element-dependent silencing (PDS), which is thought to involve the recruitment of heterochromatin proteins. To explore the mechanism of this silencing, we have mobilized KP elements to create a series of strains that contain single, well-defined KP insertions that show PDS. To understand the quantitative role of KP elements in PDS, these single inserts were combined in a series of crosses to obtain genotypes with zero, one, or two KP elements, from which we could examine the effect of KP gene dose. The extent of PDS in these genotypes was shown to be dose dependent in a logarithmic rather than linear fashion. A logarithmic dose dependency is consistent with the KP products interacting with heterochromatic proteins in a concentration-dependent manner such that two molecules are needed to induce gene silencing.


1993 ◽  
Vol 106 (1) ◽  
pp. 109-119 ◽  
Author(s):  
M.J. May ◽  
G. Entwistle ◽  
M.J. Humphries ◽  
A. Ager

Previous studies have shown that unactivated lymphocytes bind to CS1 peptide and that the adhesion of these cells to high endothelium is inhibited by CS1 peptide. These results suggest that lymphocyte binding occurs via recognition of the CS1-containing splice variant of fibronectin expressed on the high endothelial surface. We have now extended these studies by determining the role of the CS1 receptor, alpha 4 beta 1 (VLA-4) and the alternative VLA-4 ligand, VCAM-1 in a rat model of lymphocyte-high endothelial cell interaction. Anti-VLA-4 antibody, HP2/1, blocked lymphocyte adhesion to resting and IFN-gamma (interferon-gamma) pretreated cultured high endothelial cells (HEC) in a dose-dependent manner with maximal inhibition of 60%. HP2/1 completely blocked the adhesion of rat lymphocytes to immobilized CS1 peptide and to a recombinant soluble (rs) form of human VCAM-1. Lymphocyte binding to rsVCAM-1 was also completely blocked by CS1 peptide. Anti-rat VCAM-1 monoclonal antibody 5F10 inhibited adhesion to untreated and IFN-gamma-treated HEC equally and its effect at 50% inhibition was slightly less than that of HP2/1. These findings suggest that a CS1 peptide-inhibitable ligand expressed by high endothelium is VCAM-1. The majority of cultured HEC expressed significant levels of VCAM-1 under basal conditions, as did HEV in peripheral lymph nodes. VCAM-1 expression by HEC was upregulated by cytokine pretreatment and the effects were ordered: IFN-gamma &gt; TNF-alpha &gt; IL-1 beta. The results described here demonstrate that rat peripheral lymph node HEC express VCAM-1, its expression is upregulated by cytokines, in particular IFN-gamma, and it supports the adhesion of unactivated lymphocytes. They also suggest that the VLA-4/VCAM-1 adhesion pathway may operate during the constitutive migration of lymphocytes into lymphoid organs. Although the mechanism of CS1 peptide inhibition was not determined, these results show that VCAM-1 is a CS1 peptide-inhibitable ligand and therefore CS1, on its own, cannot be used as a specific indicator of fibronectin activity.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (11) ◽  
pp. 58-60
Author(s):  
N Solanki ◽  
◽  
S. K Bhavsar

Ficus racemosa is used in traditional system of medicine for various health problems and diseases, and is commonly known as Gular fig. The main objective was to study its effects against streptozotocin induced diabetic neuropathy by structural and functional marker. Investigation of diabetic neuropathy was carried out through functional and structural assessment in streptozotocin induced in diabetic rats. Diabetic rats were treated for 28 days in dose dependent manner of Ficus racemosa aqueous extract (250 mg/kg and 500 mg/kg) and ethanolic extract (200 mg/kg and 400 mg/kg). Study showed marked protection observed by Ficus racemosa in hippocampus region of brain and sciatic nerve tissues. Ficus racemosa treatment showed improvement in functional and structural markers, which strongly suggest its protective role in diabetic neuropathy.


Sign in / Sign up

Export Citation Format

Share Document