scholarly journals Community Assembly as the Basis for Species Selection for Tropical Forest Restoration in Global Change Scenario

2020 ◽  
Author(s):  
João Augusto Alves Meira-Neto ◽  
Neil Damas de Oliveira-Júnior ◽  
Nathália Silva ◽  
Ary Teixeira de Oliveira-Filho ◽  
Marcelo Leandro Bueno ◽  
...  

Abstract Background Tropical forests hold high biodiversity, which challenges the selection of species for forest restoration. For a site-specific restoration is required the understanding of the main influences ruling the assemblages. We aimed to answer three questions. 1) how do environmental variables influence taxonomic, phylogenetic diversities, and the phylogenetic structure in the of Rio Doce Basin (TFRD)? 2) How do environmental variables, phylogenetic structure and the main types of seed dispersal relate to each other? 3) Which information of the TFRD assemblages can be used for ecological restoration and conservation in global change scenario? We used 78 sites with their checklists to calculate taxonomic, and phylogenetic diversities, phylogenetic structures, and dispersal proportions. Then, we related the diversities of the sites to their bioclimatic variables and built GLM models.Results Species richness was influenced negatively by water excess duration, by water deficit duration, and positively by maximum temperature, and temperature seasonality. Water regime drives diversity and phylogenetic community structure in the TFRD more than other variables. Annual precipitation and maximum temperature presented the clearer influences on diversity and phylogenetic structure. Zoochory was positively, and anemochory, autochory were negatively related to sesMPD. Conclusions By choosing the lineages with high fitness for each site, the functioning and the stability of ecosystems should increase. The addition of species with anemochory and autochory increases functional and phylogenetic diversity in areas with extreme water excess or water deficit, important in a global change scenario. A high proportion of zoochory allows the communities to function conserving dispersers, biodiversity, and services.

Author(s):  
João Augusto Alves Meira-Neto ◽  
Neil Damas de Oliveira-Júnior ◽  
Nathália Silva ◽  
Ary Teixeira de Oliveira-Filho ◽  
Marcelo Leandro Bueno ◽  
...  

AbstractNative tropical forests hold high levels of diversity, challenging forest restoration of large areas in a global change scenario. For a site-specific restoration is required the understanding of the main influences ruling the assemblages. We aimed to answer three questions. 1) how do environmental variables influence taxonomic, phylogenetic diversities, and the phylogenetic structure in the of Rio Doce Basin (TFRD)? 2) How do environmental variables, phylogenetic structure and the main types of seed dispersal relate to each other? 3) Which information of the TFRD assemblages can be used for ecological restoration and conservation? We used 78 sites with their checklists to calculate taxonomic, and phylogenetic diversities, phylogenetic structures, and dispersal proportions. Then, we related the diversities of the sites to their bioclimatic variables and built GLM models. Species richness was influenced negatively by water excess duration, by water deficit duration, and positively by maximum temperature, and temperature seasonality. Water regime drives diversity and phylogenetic community structure in the TFRD more than other variables. Annual precipitation and maximum temperature presented the clearer influences on diversity and phylogenetic structure. Zoochory was positively, and anemochory, autochory were negatively related to sesMPD. By choosing the lineages with high fitness for each site, the functioning and the stability of ecosystems should increase. The addition of species with anemochory and autochory increases functional and phylogenetic diversity in areas with extreme water excess or water deficit, important in a global change scenario. A high proportion of zoochory allows the communities to function conserving dispersers, biodiversity, and services.Implications for practiceThe use of objective methods based on community assembly rules enhances the choice of species, and of phylogenetic lineages better fitted to the bioclimatic profiles of the areas to be restored, improving the functioning and stability of the restored forests.The water purification service should be improved through forest restoration as much as possible because ecosystem services and biodiversity conservation are co-benefits of restored forests.The inclusion of species with anemochory, and autochory in forest restoration practices should become usual, as they increase functional, and phylogenetic diversities, and as a consequence, the ecosystem stability.A large proportion of species with zoochory in restored forests co-benefits taxonomic diversity, phylogenetic diversity, and ecosystem stability.


Botany ◽  
2010 ◽  
Vol 88 (8) ◽  
pp. 725-736 ◽  
Author(s):  
R. C. Johnson ◽  
Vicky J. Erickson ◽  
Nancy L. Mandel ◽  
J. Bradley St Clair ◽  
Kenneth W. Vance-Borland

Seed transfer zones ensure that germplasm selected for restoration is suitable and sustainable in diverse environments. In this study, seed zones were developed for mountain brome ( Bromus carinatus Hook. & Arn.) in the Blue Mountains of northeastern Oregon and adjoining Washington. Plants from 148 Blue Mountain seed source locations were evaluated in common-garden studies at two contrasting test sites. Data on phenology, morphology, and production were collected over two growing seasons. Plant traits varied significantly and were frequently correlated with annual precipitation and annual maximum temperature at seed source locations (P < 0.05). Plants from warmer locations generally had higher dry matter production, longer leaves, wider crowns, denser foliage, and greater plant height than those from cooler locations. Regression models of environmental variables with the first two principal components (PC 1 and PC 2) explained 46% and 40% of the total variation, respectively. Maps of PC 1 and PC 2 generally corresponded to elevation, temperature, and precipitation gradients. The regression models developed from PC 1 and PC 2 and environmental variables were used to map seed transfer zones. These maps will be useful in selecting mountain brome seed sources for habitat restoration in the Blue Mountains.


2015 ◽  
Author(s):  
Carlo Ricotta ◽  
Eszter EA Ari ◽  
Giuliano Bonanomi ◽  
Francesco Giannino ◽  
Duncan Heathfield ◽  
...  

The increasing availability of phylogenetic information facilitates the use of evolutionary methods in community ecology to reveal the importance of evolution in the species assembly process. However, while several methods have been applied to a wide range of communities across different spatial scales with the purpose of detecting non-random phylogenetic patterns, the spatial aspects of phylogenetic community structure have received far less attention. Accordingly, the question for this study is: can point pattern analysis be used for revealing the phylogenetic structure of multi-species assemblages? We introduce a new individual-centered procedure for analyzing the scale-dependent phylogenetic structure of multi-species point patterns based on digitized field data. The method uses nested circular plots with increasing radii drawn around each individual plant and calculates the mean phylogenetic distance between the focal individual and all individuals located in the circular ring delimited by two successive radii. This scale-dependent value is then averaged over all individuals of the same species and the observed mean is compared to a null expectation with permutation procedures. The method detects particular radius values at which the point pattern of a single species exhibits maximum deviation from the expectation towards either phylogenetic aggregation or segregation. Its performance is illustrated using data from a grassland community in Hungary and simulated point patterns. The proposed method can be extended to virtually any distance function for species pairs, such as functional distances.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 186
Author(s):  
Khishigdelger Enkhtur ◽  
Bazartseren Boldgiv ◽  
Martin Pfeiffer

Geometrids are a species-rich group of moths that serve as reliable indicators for environmental changes. Little is known about the Mongolian moth fauna, and there is no comprehensive review of species richness, diversity, and distribution patterns of geometrid moths in the country. Our study aims to review the existing knowledge on geometrid moths in Mongolia. We compiled geometrid moth records from published scientific papers, our own research, and from the Global Biodiversity Information Facility (GBIF) to produce a checklist of geometrid moths of Mongolia. Additionally, we analyzed spatial patterns, species richness, and diversity of geometrid moths within 14 ecoregions of Mongolia and evaluated environmental variables for their distribution. In total, we compiled 1973-point records of 388 geometrid species. The most species-rich ecoregion in Mongolia was Daurian Forest Steppe with 142 species. Annual precipitation and maximum temperature of the warmest month were the most important environmental variables that correlated with NMDS axes in an analysis of geometrid assemblages of different ecoregions in Mongolia.


2018 ◽  
Vol 11 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Bijoy Chhetri ◽  
Hemant K. Badola ◽  
Sudip Barat

Current rates of climatic change will affect the structure and function of community assemblages on Earth. In recent decades, advances in modelling techniques have illuminated the potential effects of various climatic scenarios on biodiversity hotspots, including community assemblages in the Himalayas. These techniques have been used to test the effects of representative concentration pathways (RCPs) AR5-2050, based on future greenhouse gas emission trajectories of climate change scenario/year combinations, on pheasants. Current bioclimatic variables, Miroc-esm, Hadgem2-AO and Gfdl-cm3, in future climate change scenario models, were used to predict the future distribution and the gain/loss of future habitat area, within the Himalayas, of the pheasant, Satyr Tragopon (Tragopan satyra). The results indicate that future climatic conditions may significantly affect the future distribution of Satyr Tragopon and the effectiveness of protective areas (PAs). Using the python based GIS toolkit, SDM projection, regions of high risk under climate change scenarios were identified. To predict the present distribution of the species, environment parameters of bioclimatic variables, red reflectance, blue reflectance, solar azimuth angle, altitude, slope, aspect, NDVI, EVI, VI, and LCLU were used. The forest cover (NDVI) and the canopy cover (EVI), and variables affecting forest structure, namely altitude, slope, solar azimuth angle and Bio7, were the primary factors dictating the present distribution of T. satyra. The predicted trend of habitat shifting of T. satyra in the Himalayas to higher altitudes and latitudes will gradually become more prominent with climate warming.


2020 ◽  
Vol 9 (3) ◽  
pp. 173
Author(s):  
Muhammad Asif Javed ◽  
Sajid Rashid Ahmad ◽  
Wakas Karim Awan ◽  
Bilal Ahmed Munir

There is a global realization in all governmental setups of the need to provoke the efficient appraisal of crop water budgeting in order to manage water resources efficiently. This study aims to use the satellite remote sensing techniques to determine the water deficit in the crop rich Lower Bari Doab Canal (LBDC) command area. Crop classification was performed using multi-temporal NDVI profiles of Landsat-8 imagery by distinguishing the crop cycles based on reflectance curves. The reflectance-based crop coefficients (Kc) were derived by linear regression between normalized difference vegetation index (NDVI) cycles of the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1 and MYD13Q1 products and Food and Agriculture Organization (FAO) defined crop coefficients. A MODIS 250 m NDVI product of the last 10 years (2004-2013) was used to identify the best performing crop cycle using Fourier filter method. The meteorological parameters including rainfall and temperature substantiated the reference evapotranspiration (ET0) calculated using the Hargreaves method. The difference of potential ET and actual ET, derived from the reflectance-based Kc calculated using reference NDVI and current NDVI, generates the water deficit. Results depict the strong correlation between ET, temperature and rainfall, as the regions having maximum temperature resulted in high ET and low rainfall and vice versa. The derived Kc values were observed to be accurate when compared with the crop calendar. Results revealed maximum water deficit at middle stage of the crops, which were observed to be particularly higher at the tail of the canal command. Moreover, results also depicted that kharif (summer) crops suffer higher deficit in comparison to rabi (winter) crops due to higher ET demand caused by higher temperature. Results of the research can be utilized for rational allocation of canal supplies and guiding farmers towards usage of alternate sources to avoid crop water stress.


2015 ◽  
Vol 370 (1662) ◽  
pp. 20140008 ◽  
Author(s):  
Hironori Toyama ◽  
Tsuyoshi Kajisa ◽  
Shuichiro Tagane ◽  
Keiko Mase ◽  
Phourin Chhang ◽  
...  

Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging.


2011 ◽  
Vol 105 (3-4) ◽  
pp. 121-139 ◽  
Author(s):  
José M. García-Ruiz ◽  
J. Ignacio López-Moreno ◽  
Sergio M. Vicente-Serrano ◽  
Teodoro Lasanta–Martínez ◽  
Santiago Beguería

Zootaxa ◽  
2017 ◽  
Vol 4282 (2) ◽  
pp. 374 ◽  
Author(s):  
MING KAI TAN ◽  
SIGFRID INGRISCH ◽  
RODZAY BIN HAJI ABDUL WAHAB

Based on newly collected specimens from Brunei, a new species of Velarifictorus Randell, 1964 is described: Velarifictorus temburongensis sp. nov. This represents the first species of the genus Velarifictorus to be described from Borneo. Unexpectedly, the more widespread species Velarifictorus aspersus aspersus (Walker, 1869) was found together with the new species in the same locality, representing a new locality record for V. aspersus in Brunei. We used MaxEnt modelling to test if it was likely that this species occurs in Ulu Temburong and Borneo based on a set of bioclimatic predictors. While MaxEnt modelling showed that V. aspersus can occur in Borneo, it did not convincingly predict its occurrence in Ulu Temburong where it was found. Based on the model, maximum temperature of warmest month, minimum temperature of coldest month and annual precipitation are important bioclimatic variables to predict the distribution. 


2020 ◽  
Author(s):  
Luca Santini ◽  
Nick J.B. Isaac

AbstractThe negative relationship between body size and population density (SDR) in mammals is often interpreted as resulting from energetic constraints. In a global change scenario, however, this relationship might be expected to change, given the size-dependent nature of anthropogenic pressures and vulnerability to extinction. Here we test whether the SDR in mammals has changed over the last 50 years. We show that the relationship has shifted down and became shallower, corresponding to a decline in population density of 32-72%, for the largest and smallest mammals, respectively. However, the SDRs become steeper in some groups (e.g. carnivores) and shallower in others (e.g. herbivores). The Anthropocene reorganization of biotic systems is apparent in macroecological relationships that were previously believed to be immutable, reinforcing the notion that biodiversity pattens are contingent upon conditions at the time of investigation. We call for an increased attention on the role of global change on macroecological inferences.


Sign in / Sign up

Export Citation Format

Share Document