scholarly journals Weathering controls on the Phanerozoic phosphate cycle

Author(s):  
Shlomit Sharoni ◽  
Itay Halevy

Abstract Although phosphate is an essential macronutrient for marine biota, critical to our understanding of marine productivity, biogeochemistry, and evolution, its long-timescale geologic history is poorly constrained. We constrain weathering-derived fluxes and seawater concentrations of phosphate throughout the Phanerozoic (541 Ma to present), by developing a model for the coupled, long-term biogeochemical cycles of phosphate, carbon, oxygen, and calcium. We find that the relative contribution of continental and seafloor weathering to the total weathering rate exerts a first-order control on ocean productivity, through a previously uninvestigated mechanism. Specifically, continental weathering is a source of the limiting nutrient phosphate, but seafloor weathering is not. As a result, times in Earth history in which seafloor weathering constitutes a large fraction of the total weathering rate (e.g., the early Paleozoic and Mesozoic), are also times in which phosphate delivery to the ocean is relatively low. A lower concentration of phosphate in seawater likely affected primary productivity, oceanic and atmospheric oxygen concentrations, with possible implications for the evolution of marine fauna over Earth history.

1993 ◽  
Vol 264 (4) ◽  
pp. R797-R803 ◽  
Author(s):  
J. M. Weber ◽  
T. J. Roberts ◽  
C. R. Taylor

Glycerol kinetics and total fatty acid (FA) oxidation of trained African pygmy goats were measured by continuous infusion of [2-3H]glycerol and indirect calorimetry during treadmill exercise at 40, 60, and 85% maximal O2 consumption (VO2max). Our main goals were 1) to determine whether rates of FA mobilization and utilization are eventually matched as exercise intensity increases, thereby minimizing reesterification to supply more FA to working muscles, and 2) to test the hypothesis that lipolytic rate is proportional to aerobic capacity by comparing low-aerobic goats with published values from highly aerobic dogs and humans. Mean rate of glycerol release in the circulation (Ra glycerol) was 3.83 +/- 0.11 at rest, 7.69 +/- 0.88 at 40% VO2max, reached a maximum of 15.32 +/- 0.95 at 60% VO2max, and returned to 10.53 +/- 0.76 mumol.kg-1 x min-1 at 85% VO2max. Lipolytic rate did not match total FA oxidation, implying that Ra glycerol cannot be used as an index of FA utilization, even during intense exercise. A large fraction of total FA released by lipolysis was reesterified at 60 and 85% VO2max, showing that FA mobilization does not limit whole animal FA oxidation at these intensities. Comparing goat, dog, and human responses reveals that mammalian lipolytic rate is scaled with aerobic capacity. High- and low-aerobic species exercising at the same %VO2max mobilize FA in exact proportion with their metabolic rate, suggesting that the relative contribution of FA to total energy provision is independent of VO2max.


2020 ◽  
Author(s):  
Konstantina Agiadi ◽  
Niklas Hohmann ◽  
Giorgio Carnevale ◽  
Elsa Gliozzi ◽  
Constanza Faranda ◽  
...  

<p>The Messinian Salinity Crisis (MSC) was the greatest paleoenvironmental perturbation the Mediterranean has ever seen. The literature is abundant in hypotheses on the repercussions of the MSC on organisms. However, all these are based on incomplete and still uncertain scenarios about the MSC evolution, as well as on the assumption that such a paleoenvironmental perturbation must have completely reset marine biota. Having prevailed for many decades now, this assumption has leaked from paleontology and geosciences to biological sciences, with numerous studies taking this scenario for granted instead of using it as a starting hypothesis to be tested. Here, we review and revise the marine fossil record across the Mediterranean from the Tortonian until the Zanclean to follow the current rules of nomenclature, correct misidentifications, and control for stratigraphic misplacements. We examine the composition of marine faunas, both taxonomically and considering the function of each group in the marine ecosystem and the transfer of energy through the marine food web. Specifically, we investigate the following functional groups: 1) primary producers, 2) secondary producers, 3) primary consumers, 4) secondary consumers, and 5) top predators. Our study includes sea grasses, phytoplankton, corals, benthic and planktonic foraminifera, bivalves, gastropods, brachiopods, echinoids, bryozoans, fishes, ostracods, and marine mammals. We calculate biodiversity indexes to provide independent evidence quantifying to what degree the marine fauna underwent:</p><ol><li>A drop of overall regional biodiversity of the Mediterranean due to environmental stress during the Messinian.</li> <li>A taxonomic and functional change between the Tortonian, Messinian, and the Zanclean, that is before and after the MSC, as well as during the precursor events to that actual crisis taking place after the Tortonian/Messinian boundary.</li> <li>The onset of the present-day west-to-east decreasing gradient in species richness, which has been related to the sea temperature and productivity gradients and the distance from the Gibraltar connection to the Atlantic.</li> </ol>


Zootaxa ◽  
2021 ◽  
Vol 5024 (1) ◽  
pp. 1-63
Author(s):  
JORGE RODRÍGUEZ ◽  
PAT A. HUTCHINGS ◽  
JANE E. WILLIAMSON

Flatworms of the Order Polycladida are a group of free-living invertebrates found in a diversity of marine habitats, with over 800 species described worldwide. Marine flatworms are a conspicuous component of Australia’s marine fauna yet have received little attention. Less than 30 scientific articles have been published on Australian marine flatworms since 1855, of which only nine include species from southeastern Australia. Here, the biodiversity and distribution of species belonging to the Order Polycladida inhabiting intertidal rocky beaches in southeastern Australian waters were identified and analysed. Sampling was conducted at low tide along the coasts of New South Wales and Victoria. Collected samples were serially sectioned for comparative anatomical studies, and tissue was removed from each individual for molecular sequencing and analyses. Both nuclear and mitochondrial DNA sequences were obtained and used as an additional source of evidence for the description of new species as well as providing further insight into the phylogenetic relationships between them. A total of 20 species, six of which are new (e.g., Eulatocestus australis sp. nov.), and a new genus (Parabolia gen. nov.) have been described, as well as two new records for Australia (e.g., Stylochoplana clara Kato, 1937) have been identified increasing our knowledge of this important component of the Australian marine biota.  


2018 ◽  
Author(s):  
Jennifer A Clack ◽  
Carys E Bennett ◽  
Sarah J Davies ◽  
Andrew C Scott ◽  
Janet Sherwin ◽  
...  

A conglomerate bed from the Tournaisian Ballagan Formation of Scotland preserves a rich array of vertebrate and other non-marine fossils providing an insight into the wider ecosystem and palaeoenvironment that existed during this pivotal stage of Earth history. It challenges hypotheses of a long-lasting post-extinction trough following the end-Devonian extinction event. The fauna recovered includes a wide size range of tetrapods, rhizodonts and dipnoans, from tiny juveniles or small-bodied taxa up to large adults, and more than one taxon of each group is likely. Some fauna, such as actinopterygians and chondrichthyans, are rare as macrofauna but are better represented in the microfossil assemblage. The fauna provides evidence of the largest Carboniferous lungfish ever found. The specimens are preserved in a localised, poorly-sorted conglomerate which was deposited in the deepest part of a river channel, the youngest of a group of channels. In addition to the fossils (micro- and macro-), the conglomerate includes locally-derived clasts of palaeosols and other distinctive elements of the surrounding floodplains. Charcoal fragments represent stem and possible trunk tissue from arborescent pteridosperms. Preservation of the fossils indicates some aerial exposure prior to transport, with abrasion from rolling. The findings presented here contrast with other published trends in vertebrate size that are used to interpret a reduction in maximum sizes during the Tournaisian. The richness of the fauna runs counter to the assumption of a depauperate non-marine fauna following the end-Devonian Hangenberg event, and charcoal content highlights the occurrence of fire, with the requisite levels of atmospheric oxygen during that stage.


2021 ◽  
pp. jgs2021-036
Author(s):  
A.R. Prave ◽  
K. Kirsimäe ◽  
A. Lepland ◽  
A.E. Fallick ◽  
T. Kreitsmann ◽  
...  

The Palaeoproterozoic Lomagundi-Jatuli Event (LJE) is generally considered the largest, in both amplitude and duration, positive carbonate C-isotope (δ13Ccarb) excursion in Earth history. Conventional thinking is that it represents a global perturbation of the carbon cycle between 2.3–2.1 Ga linked directly with and in part causing the postulated rise in atmospheric oxygen during the Great Oxidation Event. In addition to new high-resolution δ13Ccarb measurements from LJE-bearing successions of NW Russia, we compiled 14,943 δ13Ccarb values obtained from marine carbonate rocks 3.0–1.0 Ga in age and from selected Phanerozoic time intervals as a comparator of the LJE. Those data integrated with sedimentology show that, contra to consensus, the δ13Ccarb trend of the LJE is facies (i.e. palaeoenvironment) dependent. Throughout the LJE interval, the C-isotope composition of open and deeper marine settings maintained a mean δ13Ccarb value of +1.5 ± 2.4‰, a value comparable to those settings for most of Earth history. In contrast, the 13C-rich values that are the hallmark of the LJE are limited largely to nearshore-marine and coastal-evaporitic settings with mean δ13Ccarb values of +6.2 ± 2.0‰ and +8.1 ± 3.8‰, respectively. Our findings confirm that changes in δ13Ccarb are linked directly to facies changes and archive contemporaneous DIC pools having variable C-isotopic compositions in laterally adjacent depositional settings. The implications are that the LJE cannot be construed a priori as representative of the global carbon cycle or a planetary-scale disturbance to that cycle, nor as direct evidence for oxygenation of the ocean-atmosphere system. This requires rethinking models relying on those concepts and framing new ideas in the search for understanding the genesis of the grandest of all positive C-isotope excursions, its timing and its hypothesised linkage to oxygenation of the atmosphere.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5471815


2014 ◽  
Vol 11 (17) ◽  
pp. 4599-4613 ◽  
Author(s):  
C. Rödenbeck ◽  
D. C. E. Bakker ◽  
N. Metzl ◽  
A. Olsen ◽  
C. Sabine ◽  
...  

Abstract. Interannual anomalies in the sea–air carbon dioxide (CO2) exchange have been estimated from surface-ocean CO2 partial pressure measurements. Available data are sufficient to constrain these anomalies in large parts of the tropical and North Pacific and in the North Atlantic, in some areas covering the period from the mid 1980s to 2011. Global interannual variability is estimated as about 0.31 Pg C yr−1 (temporal standard deviation 1993–2008). The tropical Pacific accounts for a large fraction of this global variability, closely tied to El Niño–Southern Oscillation (ENSO). Anomalies occur more than 6 months later in the east than in the west. The estimated amplitude and ENSO response are roughly consistent with independent information from atmospheric oxygen data. This both supports the variability estimated from surface-ocean carbon data and demonstrates the potential of the atmospheric oxygen signal to constrain ocean biogeochemical processes. The ocean variability estimated from surface-ocean carbon data can be used to improve land CO2 flux estimates from atmospheric inversions.


2021 ◽  
Vol 118 (51) ◽  
pp. e2105074118
Author(s):  
Peng Liu ◽  
Jingjun Liu ◽  
Aoshuang Ji ◽  
Christopher T. Reinhard ◽  
Noah J. Planavsky ◽  
...  

Reconstructing the history of biological productivity and atmospheric oxygen partial pressure (pO2) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating pO2 and productivity during the Proterozoic. O-MIF, reported as Δ′17O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes. Atmospheric O-MIF can be preserved in the geologic record when pyrite (FeS2) is oxidized during weathering, and the sulfur is redeposited as sulfate. Here, sedimentary sulfates from the ∼1.4-Ga Sibley Formation are reanalyzed using a detailed one-dimensional photochemical model that includes physical constraints on air–sea gas exchange. Previous analyses of these data concluded that pO2 at that time was <1% PAL (times the present atmospheric level). Our model shows that the upper limit on pO2 is essentially unconstrained by these data. Indeed, pO2 levels below 0.8% PAL are possible only if atmospheric methane was more abundant than today (so that pCO2 could have been lower) or if the Sibley O-MIF data were diluted by reprocessing before the sulfates were deposited. Our model also shows that, contrary to previous assertions, marine productivity cannot be reliably constrained by the O-MIF data because the exchange of molecular oxygen (O2) between the atmosphere and surface ocean is controlled more by air–sea gas transfer rates than by biological productivity. Improved estimates of pCO2 and/or improved proxies for Δ′17O of atmospheric O2 would allow tighter constraints to be placed on mid-Proterozoic pO2.


2014 ◽  
Vol 11 (2) ◽  
pp. 3167-3207 ◽  
Author(s):  
C. Rödenbeck ◽  
D. C. E. Bakker ◽  
N. Metzl ◽  
A. Olsen ◽  
C. Sabine ◽  
...  

Abstract. Interannual anomalies in the sea–air carbon dioxide (CO2) exchange have been estimated from surface-ocean CO2 partial pressure measurements. Available data are sufficient to constrain these anomalies in large parts of the tropical and Northern Pacific and in the Northern Atlantic, in some areas since the mid 1980s to 2011. Global interannual variability is estimated as about 0.31 Pg C yr−1 (temporal standard deviation 1993–2008). The tropical Pacific accounts for a large fraction of this global variability, closely tied to ENSO. Anomalies occur more than 6 months later in the East than in the West. The estimated amplitude and ENSO response are consistent with independent information from atmospheric oxygen data. Despite discrepancies in detail, this both supports the variability estimated from surface-ocean carbon data, and demonstrates the potential of the atmospheric oxygen signal to constrain ocean biogeochemical processes. The ocean variability estimated from surface-ocean carbon data can be used to improve land CO2 flux estimates from atmospheric inversions.


2015 ◽  
Vol 12 (11) ◽  
pp. 8615-8690 ◽  
Author(s):  
A. S. Rigual-Hernández ◽  
T. W. Trull ◽  
S. G. Bray ◽  
A. Cortina ◽  
L. K. Armand

Abstract. The Subantarctic and Polar Frontal zones (SAZ and PFZ) represent a large portion of the total area of the Southern Ocean and serve as a strong sink for atmospheric CO2. These regions are central to hypotheses linking particle fluxes and climate change, yet multi-year records of modern flux and the organisms that control it are, for obvious reasons, rare. In this study, we examine two sediment trap records of the flux of diatoms and bulk components collected by two bottom-tethered sediment traps deployed at mesopelagic depths (~ 1 km) in the SAZ (two-year record) and in the PFZ (six-year record) along the 140° E meridian. These traps provide a direct measure of transfer below winter mixed layer depths, i.e. at depths where effective sequestration from the atmosphere occurs, in contrast to study of processes in the surface ocean. Total mass fluxes were about two-fold higher in the PFZ (24 ± 13 g m−2 yr−1) than in the SAZ (14 ± 2 g m−2 yr−1). Bulk chemical composition of the particle fluxes mirrored the composition of the distinct plankton communities of the surface layer, being dominated by carbonate in the SAZ and by biogenic silica in the PFZ. POC export was similar for the annual average at both sites (1.0 ± 0.1 and 0.8 ± 0.4 g m−2 yr−1, for the PFZ and SAZ, respectively), indicating that the particles in the SAZ were relatively POC rich. Seasonality in the particle export was more pronounced in the PFZ. Peak fluxes occurred during summer in the PFZ and during spring in the SAZ. The strong summer pulses in the PFZ are responsible for a large fraction of the variability in carbon sequestration from the atmosphere in this region. The latitudinal variation of the total diatom flux was found to be in line with the biogenic silica export with an annual flux of 31 ± 5.5 × 108 valves m−2 yr−1 at the PFZ compared to 0.5 ± 0.4 × 108 m−2 yr−1 of the SAZ. Fragilariopsis kerguelensis dominated the annual diatom export at both sites (43 at the SAZ and 59% in the PFZ). POC fluxes displayed a strong positive correlation with the relative contribution of a group of weakly-silicified and bloom-forming species in the PFZ. Several lines of evidence suggest that the development of these species during the growth season facilitates the formation of aggregates and carbon export. Our results confirm previous work suggesting that F. kerguelensis is a major aspect of the decoupling of the carbon and silicon cycles in the high-nutrient low-chlorophyll waters of the Southern Ocean.


Sign in / Sign up

Export Citation Format

Share Document