scholarly journals Bifidobacterium Bifidum Isolated From Chicken Intestine Along With Polyvinylpyrrolidone Showed Synergistic Effects on Reduction of AFB1 Contamination- in Vitro Study

Author(s):  
sorour Aalipanah ◽  
Mohhammad Reza Fazeli ◽  
Abbas Akhavan Sepahi ◽  
Farid Shariatmadari

Abstract Background: Food contamination with aflatoxin is one of the most important concerns of health professionals. One of the best ways to reduce aflatoxin content in food is to use probiotics. Therefore, this study was performed to isolate Bifidobacterium from the chick intestine and its probiotic activities and also its application with Polyvinylpyrrolidone (PVP) to reduce aflatoxin B1 (AFB1) toxin in the medium were investigated.Results: Samples were isolated from the chicken intestine. Biochemical and molecular evaluations indicated isolation of Bifidobacterium bifidum strain from chicken intestine. To measure probiotic activities, pH, bile, and salt tolerance tests were used. The selected B. bifidum had good probiotic activity. Then, the antimicrobial activity of isolate against gastrointestinal pathogens and the antibiotic susceptibility test were done. The selected strain showed antimicrobial activities on S. enterica, E. coli, and P. vulgaricus and was found to be resistant against Amikacin, Ampicillin, Erythromycin, and Ceftazidine antibiotics. Then, the effect of selected isolate and PVP on reducing AFB1 in the medium was studied using ELISA and HPLC. The selected strain showed the ability to reduce the concentration of AFB1 in the medium (50% reduction) and when used in combination with PVP showed the synergistic effects in reducing the concentration of AFB1 from the medium (up to 90%).Conclusion: In conclusion, it was found that selected B. bifidum strain together with PVP could have synergistic effects in reducing AFB1 toxin in medium up to 90%.

2021 ◽  
Author(s):  
sorour Aalipanah ◽  
Mohammad Reza Fazeli ◽  
Abbas Akhavan Sepahi ◽  
Farid Shariatmadari

Abstract Food contamination with aflatoxin is one of the most important concerns of health professionals. One of the best ways to reduce aflatoxin content in food is to use probiotics. Therefore, this study was performed to isolate Bifidobacterium from the chick's intestine and its probiotic activities and also its application with Polyvinylpyrrolidone (PVP) to reduce aflatoxin B1 (AFB1) toxin in the medium were investigated. Samples were isolated from the chicken intestine. After preparing the samples, Bifidobacterium was isolated and identified using biochemical and molecular methods. To measure probiotic activities, pH, bile, and salt tolerance tests were used. Then, the antimicrobial activity of isolate against gastrointestinal pathogens and the antibiotic susceptibility test were done. Then, the effect of selected isolate and PVP on reducing AFB1 in the medium was studied using ELISA and HPLC. Biochemical and molecular evaluations indicated isolation of B. bifidum strain from chicken intestine. The selected strain showed antimicrobial activities on S. enterica, E. coli, and P. vulgaricus and was found to be resistant against Amikacin, Ampicillin, Erythromycin, and Ceftazidine antibiotics. The selected strain showed the ability to reduce the concentration of AFB1 in the medium (50% reduction) and when used in combination with PVP showed the synergistic effects in reducing the concentration of AFB1 from the medium (up to 90%). In conclusion, it was found that selected B. bifidum strain together with PVP could have synergistic effects in reducing AFB1 toxin in medium up to 90%.


2019 ◽  
Vol 18 (31) ◽  
pp. 2731-2740 ◽  
Author(s):  
Sandeep Tiwari ◽  
Debmalya Barh ◽  
M. Imchen ◽  
Eswar Rao ◽  
Ranjith K. Kumavath ◽  
...  

Background: Mycobacterium tuberculosis, Vibrio cholerae, and pathogenic Escherichia coli are global concerns for public health. The emergence of multi-drug resistant (MDR) strains of these pathogens is creating additional challenges in controlling infections caused by these deadly bacteria. Recently, we reported that Acetate kinase (AcK) could be a broad-spectrum novel target in several bacteria including these pathogens. Methods: Here, using in silico and in vitro approaches we show that (i) AcK is an essential protein in pathogenic bacteria; (ii) natural compounds Chlorogenic acid and Pinoresinol from Piper betel and Piperidine derivative compound 6-oxopiperidine-3-carboxylic acid inhibit the growth of pathogenic E. coli and M. tuberculosis by targeting AcK with equal or higher efficacy than the currently used antibiotics; (iii) molecular modeling and docking studies show interactions between inhibitors and AcK that correlate with the experimental results; (iv) these compounds are highly effective even on MDR strains of these pathogens; (v) further, the compounds may also target bacterial two-component system proteins that help bacteria in expressing the genes related to drug resistance and virulence; and (vi) finally, all the tested compounds are predicted to have drug-like properties. Results and Conclusion: Suggesting that, these Piper betel derived compounds may be further tested for developing a novel class of broad-spectrum drugs against various common and MDR pathogens.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Peng Wang ◽  
Chen Shen ◽  
Qinqin Cong ◽  
Kaili Xu ◽  
Jialin Lu

Abstract Background Biodegradation of antibiotics is a promising method for the large-scale removal of antibiotic residues in the environment. However, the enzyme that is involved in the biodegradation process is the key information to be revealed. Results In this study, the beta-lactamase from Ochrobactrumtritici that mediates the biodegradation of penicillin V was identified and characterized. When searching the proteins of Ochrobactrumtritici, the β-lactamase (OtLac) was identified. OtLac consists of 347 amino acids, and predicted isoelectric point is 7.0. It is a class C β-lactamase according to BLAST analysis. The coding gene of OtLac was amplified from the genomic DNA of Ochrobactrumtritici. The OtLac was overexpressed in E. coli BL21 (DE3) and purified with Ni2+ column affinity chromatography. The biodegradation ability of penicillin V by OtLac was identified in an in vitro study and analyzed by HPLC. The optimal temperature for OtLac is 32 ℃ and the optimal pH is 7.0. Steady-state kinetics showed that OtLac was highly active against penicillin V with a Km value of 17.86 μM and a kcat value of 25.28 s−1 respectively. Conclusions OtLac demonstrated biodegradation activity towards penicillin V potassium, indicating that OtLac is expected to degrade penicillin V in the future.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1859
Author(s):  
Periyan Durairaju ◽  
Chinnasamy Umarani ◽  
Govindasami Periyasami ◽  
Perumberkandigai Adikesavan Vivekanand ◽  
Mostafizur Rahaman

Herein we report new multiblock chalcone conjugate phthalimide and naphthalimide functionalized copolymers with a topologically novel architecture synthesis using nucleophilic substitution and polycondensation methodology. The structures of the synthesized novolacs were elucidated on the basis of their spectroscopic analysis including FTIR, 1H NMR, and 13C NMR spectroscopy. Further, the number-average and weight-average molecular weights of the novolac polymers were determined by gel permeation chromatography (GPC). We examined the solubility of the synthesized polymers in various organic solvents including CHCl3, CH3CN, THF, H2O, CH3OH, DMSO, and DMF and found they are insoluble in both methanol and water. The novolac polymers were evaluated for their photophysical properties and microbial activities. The investigation of the antimicrobial activities of these polymers reveals significant antimicrobial activity against the pathogens E. coli, S. aureus, C. albicans, and A. niger.


2007 ◽  
Vol 8 (4) ◽  
pp. 262-267 ◽  
Author(s):  
T.A. Takla ◽  
S.A. Zelenitsky ◽  
L.M. Vercaigne

Purpose This in vitro study tested the effectiveness of a novel 30% ethanol/4% trisodium citrate (TSC) lock solution against the most common pathogens causing hemodialysis catheter-related infections. Methods Clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) (n=4), methicillin-sensitive S. aureus (MSSA) (n=8), methicillin-resistant Staphylococcus epidermidis (MRSE) (n=8), Pseudomonas aeruginosa (n=4) and Escherichia coli (n=4) were tested in duplicate. Bacterial suspensions of each isolate were made in a control solution of normal saline and Mueller-Hinton broth (MHB), and in a lock solution of ethanol 30%, TSC 4% and MHB. Suspensions were incubated at 37 °C for 48 h. Colony counts were determined from samples collected at t=0 h (before exposure to the ethanol/TSC lock), t=1 h (one hour after exposure to the ethanol/TSC lock), t=24 h and t=48 h. To confirm the absence of viable organisms in the lock solution, the remaining volume at 48 h was filtered through a 0.45 μm filter. The filter was rinsed with 15 mL sterile water and plated on tryptic soy agar (TSA). Results All controls demonstrated significant growth over 48 h. In the lock solutions, initial inocula were reduced to 0 viable colonies by t=1 h (6-log kill), and there was no growth at t=24 and 48 h. Filtering of lock solutions also showed no growth. These results were consistent among duplicates of all isolates. Conclusions The 30% ethanol/4% TSC lock solution consistently eradicated MRSA, MSSA, MRSE, P. aeruginosa and E. coli within 1 h of exposure. Experiments are currently underway to test this novel lock solution on preventing biofilm production by these pathogens.


Author(s):  
Onuchina N.V., Soybanov V.D.

The causative agent of anthrax - Bacillus anthracis, due to the prevalence of its natural foci in Russia, high virulence for humans and most mammals, the unique resistance of spore forms to environmental factors and repeated use in terrorist acts, is an extremely dangerous biological agent. Therefore, the search for new effective drugs for the diagnosis and treatment of anthrax, including diseases caused by antibiotic-resistant strains of B. anthracis is necessary. The use of lytic enzymes of species-specific bacteriophages is a new trend in the diagnosis, prevention and treatment of infectious diseases. The goal of this work is the cloning of the anthrax bacteriolysin PlyPH gene as part of the pTrcHis2C vector in Escherichia coli and the in vitro study of the lytic properties of the protein encoded by it against B. anthracis microbial cells. According to the complete sequencing of the B. anthracis genomes of the Ames, Stern 34F2 and JB17 strains, a prophage was found in their chromosomal DNA, which lost part of the structural genes necessary for its replication, but retained a gene with a high degree of homology with the bacteriolysin γ phage gene. For amplification and subsequent cloning of the PlyPH gene, we developed primers containing EcoRI and BamHI restriction enzyme recognition sites. Amplification of the PlyPH gene in a polymerase chain reaction (PCR) with a developed pair of primers was performed using the Stern 34F2 strain of the anthrax microbe as a template. Based on the obtained amplification products and the pTrcHis2C vector, we constructed a recombinant plasmid containing the bacteriolysin synthesis PlyPH gene and stably functioning in the cells of the recombinant E. coli strain. In the course of research, it has been established that microbial cells of the E. coli recombinant TOP10 strain provide for the production of the bacteriolysin of the anthrax prophage, PlyPH , which has the ability to in vitro lyse the vegetative cells of the STI-1 vaccine strain of B. anthracis


2021 ◽  
Vol 14 (2) ◽  
pp. 523-536
Author(s):  
Essam S. Soliman ◽  
Rania T. Hamad ◽  
Mona S. Abdallah

Background and Aim: Probiotics improve intestinal balance through bacterial antagonism and competitive exclusion. This study aimed to investigate the in vitro antimicrobial activity, as well as the in vivo preventive, immunological, productive, and histopathological modifications produced by probiotic Bacillus subtilis. Materials and Methods: The in vitro antimicrobial activities of B. subtilis (5×106 CFU/g; 0.5, 1.0*, 1.5, and 2.0 g/L) were tested against Escherichia coli O157: H7, Salmonella Typhimurium, Candida albicans, and Trichophyton mentagrophytes after exposure times of 0.25, 0.5, 1, and 2 h using minimal inhibitory concentration procedures. A total of 320 1-day-old female Ross broiler chickens were divided into five groups. Four out of the five groups were supplemented with 0.5, 1.0*, 1.5, and 2.0 g/L probiotic B. subtilis from the age of 1 day old. Supplemented 14-day-old broiler chickens were challenged with only E. coli O157: H7 (4.5×1012 CFU/mL) and S. Typhimurium (1.2×107 CFU/mL). A total of 2461 samples (256 microbial-probiotic mixtures, 315 sera, 315 duodenal swabs, and 1575 organs) were collected. Results: The in vitro results revealed highly significant (p<0.001) killing rates at all-time points in 2.0 g/L B. subtilis: 99.9%, 90.0%, 95.6%, and 98.8% against E. coli, S. Typhimurium, C. albicans, and T. mentagrophytes, respectively. Broilers supplemented with 1.5 and 2.0 g/L B. subtilis revealed highly significant increases (p<0.01) in body weights, weight gains, carcass weights, edible organs' weights, immune organs' weights, biochemical profile, and immunoglobulin concentrations, as well as highly significant declines (p<0.01) in total bacterial, Enterobacteriaceae, and Salmonella counts. Histopathological photomicrographs revealed pronounced improvements and near-normal pictures of the livers and hearts of broilers with lymphoid hyperplasia in the bursa of Fabricius, thymus, and spleen after supplementation with 2.0 g/L B. subtilis. Conclusion: The studies revealed that 1.5-2.0 g of probiotic B. subtilis at a concentration of 5×106 CFU/g/L water was able to improve performance, enhance immunity, and tissue architecture, and produce direct antimicrobial actions.


2020 ◽  
Vol 23 (4) ◽  
pp. 8p ◽  
Author(s):  
Prasanna T. Dahake ◽  
Sudhindra M Baliga

Background: Removal of all the pathogenic bacteria from the root canal system is of prime importance for the success of endodontic therapy. Objective: The study aimed to determine the antimicrobial efficacy of three antibiotics and their new combination against selected endodontic pathogens. Methods: In this in-vitro study, we used bacterial strains associated with the refractory endodontic condition and determined MIC and MBC of Clindamycin (C), Metronidazole (M), Doxycycline (D) as well as their combination CMD. We cultured Candida Albicans, Pseudomonas Aeruginosa, Escherichia Coli, Enterococcus Faecalis, Streptococcus Mutans, Bacillus Subtilis subsp. spizizenii, Actinomyces Actinomycetemcomitans on selective culture media. We analyzed the data using paired 't' test, one-way ANOVA, and Tuckey's HSD post hoc test. Results: Clindamycin inhibited the growth of C. Albicans (90%) and S. Mutans (90%) significantly and P. Aeruginosa, E. Coli, E. Faecalis, B. Subtilis, and A. Actinomycetemcomitans were resistant to it. Metronidazole did not inhibit any of the bacteria. Doxycycline inhibited C. Albicans (90%), P. Aeruginosa (90%), and S. Mutans (90%) significantly while E. Coli, E. Faecalis, B. Subtilis, and A. Actinomycetemcomitans were resistant to it. The combination of CMD inhibited all the microbes significantly. However, at bactericidal concentrations of CMD, E. Faecalis (p = 0.024), B. Subtilis (p = 0.021) and A. Actinomycetemcomitans (p = 0.041) were eliminated significantly, while C. Albicans (p = 0.164), P. Aeruginosa (p = 0.489), E. Coli (p = 0.106) and S. Mutans (p = 0.121) showed resistance. Conclusion: Combination CMD can be used against resistant endodontic pathogens to achieve predictable endodontic results.KEYWORDSAntimicrobial agents; Clindamycin; Doxycycline; Metronidazole; Root canal therapy.    


2020 ◽  
Author(s):  
Baoguang Liu ◽  
Xiaoling Yuan ◽  
Yiheng Chen ◽  
Xiaoshen Li ◽  
Ming Bai ◽  
...  

Abstract Background The spread of ESBLs-producing bacteria has been strikingly rapid in many regions of the world and it causes therapeutic difficulties in everyday practice. The aims of this study were to investigate the prevalence and susceptibilities of ESBLs-producing Escherichia coli isolates from healthy Tibetan yaks in China, to evaluate the activity of drug combinations on ESBLs-producing E. coli isolates. Methods From July 2018 to August 2019, a total of 750 nasal swab samples were tested for the presence of E. coli and ESBLs-producing strains. The MICs of 11 antimicrobial agents alone and combinations with sulbactam, EDTA or sulbactam-EDTA against 240 ESBLs-producing E.coli strains were determined by the broth microdilution method. Results Overall, 59.87% (n = 449) of the samples were positive for E. coli, 240 (53.45%) of 449 E. coli isolates were confirmed to be ESBLs-producing. The addition of sulbactam to the third generation cephalosporins, amikacin and fosfomycin for all isolates resulted in low MICs, increasing the level of susceptibility from 0, 0 and 0% to 50 ~ 87.5, 4.2 and 100% respectively. The addition of EDTA to fluoroquinolones, doxycycline, florfenicol, amikacin and fosfomycin, showed improved activities and resulted in low MICs, increasing the level of susceptibility from 0, 0, 8.3, 0 and 0% to 4.2 ~ 29.2, 33.3, 33.3, 66.7 and 45.8%, respectively. All other antibacterials (except fluoroquinolones, doxycycline and florfenicol), when combined with sulbactam-EDTA, were found to be more active than combinations only with sulbactam or with EDTA against most of isolates, with lower MIC50s and MIC90s. Conclusion In conclusion, ESBLs-producing E. coli isolates were widespread in healthy Tibetan yaks in China. ESBLs-producing E. coli isolates exhibited varying degrees of multidrug resistance. This study these findings suggested that sulbactam can enhance activity of β-lactams and some non-β-lactams of antimicrobial agents and had a synergistic effects with EDTA in improving activities of some families of antimicrobials.


2020 ◽  
Vol 21 (17) ◽  
pp. 6090
Author(s):  
Tariku Tesfaye Edosa ◽  
Yong Hun Jo ◽  
Maryam Keshavarz ◽  
In Seon Kim ◽  
Yeon Soo Han

Biosurfactant immunomodulatory activities in mammals, nematodes, and plants have been investigated. However, the immune activation property of biosurfactants in insects has not been reported. Therefore, here, we studied the defense response triggered by lipopeptides (fengycin and iturin A), glycolipids (rhamnolipid), and cyclic polypeptides (bacitracin) in the coleopteran insect, mealworm Tenebrio molitor. The in vitro antimicrobial activities against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungi (Candida albicans) were assessed by mixing these pathogens with the hemolymph of biosurfactant-immune-activated larvae. E. coli growth was remarkably inhibited by this hemolymph. The antimicrobial peptide (AMP) induction results also revealed that all biosurfactants tested induced several AMPs, exclusively in hemocytes. The survivability analysis of T. molitor larvae challenged by E. coli (106 CFU/µL) at 24 h post biosurfactant-immune activation showed that fengycin, iturin A, and rhamnopid significantly increased survivability against E. coli. Biosurfactant-induced TmSpatzles activation was also monitored, and the results showed that TmSpz3 and TmSpz-like were upregulated in the hemocytes of iturin A-injected larvae, while TmSpz4 and TmSpz6 were upregulated in the fat bodies of the fengycin-, iturin A-, and rhamnolipid-injected larvae. Overall, these results suggest that lipopeptide and glycolipid biosurfactants induce the expression of AMPs in T. molitor via the activation of spätzle genes, thereby increasing the survivability of T. molitor against E. coli.


Sign in / Sign up

Export Citation Format

Share Document