scholarly journals A Novel Ensemble Based Recommendation Approach using Network Based Analysis for Identification of Effective Drugs for Tuberculosis

Author(s):  
Rishin Haldar ◽  
Swathi Jamjala Narayanan

Abstract Tuberculosis (TB) is a fatal infectious disease which affected millions of people worldwide for many decades and now with mutating drug resistant strains, it poses bigger challenges in treatment of the patients. Computational techniques might play a crucial role in rapidly developing new or modified anti-tuberculosis drugs which can tackle these mutating strains of TB. This research work applied a computational approach to generate a unique recommendation list of possible TB drugs as an alternate to a popular drug, EMB, by first securing an initial list of drugs from a popular online database, PubChem, and thereafter applying an ensemble of ranking mechanisms. As a novelty, both the pharmacokinetic properties and some network based attributes of the chemical structure of the drugs are considered for generating separate recommendation lists. The work also provides customized modifications on a popular and traditional ensemble ranking technique to cater to the specific dataset and requirements. The final recommendation list provides established chemical structures along with their ranks, which could be used as alternatives to EMB. It is believed that the incorporation of both pharmacokinetic and network based properties in the ensemble ranking process added to the effectiveness and relevance of the final recommendation.

2021 ◽  
Vol 19 (1) ◽  
pp. 873-891
Author(s):  
Rishin Haldar ◽  
◽  
Swathi Jamjala Narayanan

<abstract> <p>Tuberculosis (TB) is a fatal infectious disease which affected millions of people worldwide for many decades and now with mutating drug resistant strains, it poses bigger challenges in treatment of the patients. Computational techniques might play a crucial role in rapidly developing new or modified anti-tuberculosis drugs which can tackle these mutating strains of TB. This research work applied a computational approach to generate a unique recommendation list of possible TB drugs as an alternate to a popular drug, EMB, by first securing an initial list of drugs from a popular online database, PubChem, and thereafter applying an ensemble of ranking mechanisms. As a novelty, both the pharmacokinetic properties and some network based attributes of the chemical structure of the drugs are considered for generating separate recommendation lists. The work also provides customized modifications on a popular and traditional ensemble ranking technique to cater to the specific dataset and requirements. The final recommendation list provides established chemical structures along with their ranks, which could be used as alternatives to EMB. It is believed that the incorporation of both pharmacokinetic and network based properties in the ensemble ranking process added to the effectiveness and relevance of the final recommendation.</p> </abstract>


2016 ◽  
Vol 38 (2) ◽  
Author(s):  
Bonnie Lawlor

AbstractThe Chemical Structure Association Trust (CSA Trust) is an internationally-recognized, registered charity that promotes and supports the advancement of scientific discovery through the application of computer technologies in the management and analysis of chemical structure information. In support of its Charter, the Trust provides grants specifically to nurture young scientists, ages thirty-five or younger, who have demonstrated excellence in research related to the storage, retrieval, and analysis of chemical structures, reactions, and compounds. Since its inception in 1988, almost one hundred students and researchers worldwide have benefited from travel bursaries and the CSA Trust Grant Program to further their education and research work, but the organization has a rich history that predates the formalization of its charity status. Its roots were planted half a century ago in 1965, when the Chemical Notation Association (CNA) was formed in the United States. It has been an interesting journey from the CNA to the CSA Trust and I have been blessed to have been a part of it almost from the beginning, along with other members of the American Chemical Society’s Division of Chemical Information. In honor of the organization’s 50th Anniversary, I’d like to give a brief overview of its past and its present activities.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Lloyd Tanner ◽  
Joanna C. Evans ◽  
Ronnett Seldon ◽  
Audrey Jordaan ◽  
Digby F. Warner ◽  
...  

ABSTRACT Mycobacterium tuberculosis, the causative agent of tuberculosis, remains a leading infectious killer globally, demanding the urgent development of faster-acting drugs with novel mechanisms of action. Riminophenazines such as clofazimine are clinically efficacious against both drug-susceptible and drug-resistant strains of M. tuberculosis. We determined the in vitro anti-M. tuberculosis activities, absorption, distribution, metabolism, and excretion properties, and in vivo mouse pharmacokinetics of a series of structurally related phenoxazines. One of these, PhX1, displayed promising drug-like properties and potent in vitro efficacy, supporting its further investigation in an M. tuberculosis-infected animal model.


2020 ◽  
Vol 10 (2) ◽  
pp. 623 ◽  
Author(s):  
Giulia Degiacomi ◽  
Juan Manuel Belardinelli ◽  
Maria Rosalia Pasca ◽  
Edda De Rossi ◽  
Giovanna Riccardi ◽  
...  

The development and spread of Mycobacterium tuberculosis multi-drug resistant strains still represent a great global health threat, leading to an urgent need for novel anti-tuberculosis drugs. Indeed, in the last years, several efforts have been made in this direction, through a number of high-throughput screenings campaigns, which allowed for the identification of numerous hit compounds and novel targets. Interestingly, several independent screening assays identified the same proteins as the target of different compounds, and for this reason, they were named “promiscuous” targets. These proteins include DprE1, MmpL3, QcrB and Psk13, and are involved in the key pathway for M. tuberculosis survival, thus they should represent an Achilles’ heel which could be exploited for the development of novel effective drugs. Indeed, among the last molecules which entered clinical trials, four inhibit a promiscuous target. Within this review, the two most promising promiscuous targets, the oxidoreductase DprE1 involved in arabinogalactan synthesis and the mycolic acid transporter MmpL3 are discussed, along with the latest advancements in the development of novel inhibitors with anti-tubercular activity.


Author(s):  
N.-H. Cho ◽  
K.M. Krishnan ◽  
D.B. Bogy

Diamond-like carbon (DLC) films have attracted much attention due to their useful properties and applications. These properties are quite variable depending on film preparation techniques and conditions, DLC is a metastable state formed from highly non-equilibrium phases during the condensation of ionized particles. The nature of the films is therefore strongly dependent on their particular chemical structures. In this study, electron energy loss spectroscopy (EELS) was used to investigate how the chemical bonding configurations of DLC films vary as a function of sputtering power densities. The electrical resistivity of the films was determined, and related to their chemical structure.DLC films with a thickness of about 300Å were prepared at 0.1, 1.1, 2.1, and 10.0 watts/cm2, respectively, on NaCl substrates by d.c. magnetron sputtering. EEL spectra were obtained from diamond, graphite, and the films using a JEOL 200 CX electron microscope operating at 200 kV. A Gatan parallel EEL spectrometer and a Kevex data aquisition system were used to analyze the energy distribution of transmitted electrons. The electrical resistivity of the films was measured by the four point probe method.


2019 ◽  
Vol 15 (6) ◽  
pp. 685-692 ◽  
Author(s):  
Tommy F. Mabasa ◽  
Babatunde Awe ◽  
Dustin Laming ◽  
Henok H. Kinfe

Background:Malaria, caused by the deadly Plasmodium falciparum strain, claims the lives of millions of people annually. The emergence of drug-resistant strains of P. falciparum to the artemisinin-based combination therapy (ACT), the last line of defense against malaria, is worrisome and urges for the development of new chemo-types with a new mode of action. In the search of new antimalarial agents, hybrids of triazoles and other known antimalarial drugs have been reported to possess better activity than either of the parent compounds administered individually. Despite their better activity, no hybrid antimalarial drugs have been developed so far.Objective:In the hope of developing new antimalarial prototypes, we propose the design, synthesis and antimalarial evaluation of novel sulfoximine-triazole hybrids owing to their interesting biological and physiological properties.Methods:The sulfoximine part of the hybrid will be synthesized via imidation of the corresponding sulfoxide. Propargylation of the NH moiety of the sulfoximine followed by copper-catalyzed click chemistry with benzyl azide was envisaged to provide the target sulfoximine-triazole hybrids.Results:Five novel sulfoximine-triazole hybrids possessing various substituents on the sulfoximine moiety have been successfully synthesized and evaluated for their antiplasmodial and cytotoxicity activities. The results revealed that the co-presence of the sulfoximine and triazole moieties along with a lipophilic alkyl substituent on the sulfur atom impart significant activity.Conclusion:Sulfoximine-triazole hybrids could be used as a prototype for the synthesis of new derivatives with better antiplasmodial activities.


2005 ◽  
Vol 18 (4) ◽  
pp. 228-246 ◽  
Author(s):  
Anela Stanic ◽  
Tulip K. Schneider

To date, 25 antiretroviral agents (including fixed-dose combinations) have gained approval by the Food and Drug Administration and are currently available on the market for the treatment of HIV-1 infection. New protease inhibitors, atazanavir sulfate (Reyataz) and fosamprenavir (Lexiva), were licensed, in addition to the nucleoside analogue reverse transcriptase inhibitor (NRTI) emtricitabine (Emtriva) and 2 fixed-dose NRTI combinations, emtricitabine/tenofovir disoproxil fumarate (Truvada) and lamivudine/abacavir (Epzicom). These newly licensed antiretroviral agents allow for lower pill burden and dosing schedule simplification, and some agents such as atazanavir sulfate are associated with improved lipid profile in comparison to other currently marketed protease inhibitors. In addition, a new class of anti-retroviral agents, entry inhibitors, of which a subclass exists called fusion inhibitors with its representative member, enfuvirtide (Fuzeon), which is currently the only available drug in its class, was marketed almost 2 years ago. Despite a remarkable progress in the treatment of HIV infection noted during the past decade, significant challenges to therapy such as tolerability issues and emergence of drug-resistant strains remain. Therefore, new antiretroviral drug development has focused on a design of drugs that work against the resistant strains of HIV and/or have a novel mechanism of action.


2021 ◽  
Vol 22 (8) ◽  
pp. 4203
Author(s):  
Giorgio Valabrega ◽  
Giulia Scotto ◽  
Valentina Tuninetti ◽  
Arianna Pani ◽  
Francesco Scaglione

Poly(ADP-ribose) polymerases (PARP) are proteins responsible for DNA damage detection and signal transduction. PARP inhibitors (PARPi) are able to interact with the binding site for PARP cofactor (NAD+) and trapping PARP on the DNA. In this way, they inhibit single-strand DNA damage repair. These drugs have been approved in recent years for the treatment of ovarian cancer. Although they share some similarities, from the point of view of the chemical structure and pharmacodynamic, pharmacokinetic properties, these drugs also have some substantial differences. These differences may underlie the different safety profiles and activity of PARPi.


2020 ◽  
Vol 23 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Mohammad Musarraf Hussain

Erythrina is a significant source of phytoconstituents. The aim of this review is to solicitude of classification, synthesis, and phytochemicals with biological activities of Erythrina. In our previous review on this genus (Hussain et. al., 2016a) fifteen species (Erythrina addisoniae, E. caribeae, E. indica, E. lattisima, E. melanacantha, E. mildbraedii, E. poeppigiama, E. stricta, E. subumbrans, E. veriagata, E. vespertilio, E. velutina, E. zeberi, E. zeyheri and E. americana) have been studied and 155 molecules with chemical structures were reported. A further comprehensive review was done upon continuation on the same genus and thirteen species (E. abyssinica, E. arborescens, E. berteroana, E. burttii, E. caffra, E. coralloids, E. crista-galli, E. fusca, E. herbaceae, E. lysistemon, E. mulungu, E. speciosa and E. tahitensis) of Erythrina have been studied and 127 compounds are reported as phytoconstituents with their chemical structure in this review. Erythrina crista-galli and E. lysistemon consist of highest number of chemical constituents. Bangladesh Pharmaceutical Journal 23(1): 65-77, 2020


Sign in / Sign up

Export Citation Format

Share Document