scholarly journals Internalization and Trafficking of CSPG-Bound Recombinant VAR2CSA Lectins in Cancer Cells

Author(s):  
Chris Kedong Wang ◽  
Irina Nelepcu ◽  
Desmond Hui ◽  
Htoo Zarni Oo ◽  
Sarah Truong ◽  
...  

Abstract Proteoglycans are proteins that are modified with glycosaminoglycan chains. Chondroitin sulfate proteoglycans (CSPGs) are currently being exploited as targets for drug-delivery in various cancer indications, however basic knowledge on how CSPGs are internalized in tumor cells is lacking. In this study we took advantage of a recombinant CSPG-binding lectin VAR2CSA (rVAR2) to track internalization and cell fate of CSPGs in tumor cells. We found that rVAR2 is internalized into cancer cells via multiple internalization mechanisms after initial docking on cell surface CSPGs. Regardless of the internalization pathway used, CSPG-bound rVAR2 was trafficked to the early endosomes in an energy-dependent manner but not further transported to the lysosomal compartment. Instead, internalized CSPG-bound rVAR2 proteins were secreted with exosomes to the extracellular environment in a strictly chondroitin sulfate-dependent manner. In summary, our work describes the cell fate of rVAR2 proteins in tumor cells after initial binding to CSPGs, which can be further used to inform development of rVAR2-drug conjugates and other therapeutics targeting CSPGs.

2020 ◽  
Author(s):  
Ana Krotenberg Garcia ◽  
Arianna Fumagalli ◽  
Huy Quang Le ◽  
Owen J. Sansom ◽  
Jacco van Rheenen ◽  
...  

AbstractCompetitive cell-interactions play a crucial role in quality control during development and homeostasis. Here we show that cancer cells use such interactions to actively eliminate wild-type intestine cells in enteroid monolayers and organoids. This apoptosis-dependent process boosts proliferation of intestinal cancer cells. The remaining wild-type population activates markers of primitive epithelia and transits to a fetal-like state. Prevention of this cell fate transition avoids elimination of wild-type cells and, importantly, limits the proliferation of cancer cells. JNK signalling is activated in competing cells and is required for cell fate change and elimination of wild-type cells. Thus, cell competition drives growth of cancer cells by active out-competition of wild-type cells through forced cell death and cell fate change in a JNK dependent manner.


2021 ◽  
Author(s):  
Huazhen Xu ◽  
Tongfei Li ◽  
Chao Wang ◽  
Yan Ma ◽  
Yan Liu ◽  
...  

Abstract Background: Tumor-associated macrophages (TAM) are the most abundant stromal cells in the tumor microenvironment. Turning the TAM against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically “cold” tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells’ immunogenicity and thereby reactivate the TAM into the anti-tumor M1 phenotype. Results: Nano-DOX were first shown to stimulate the tumor cells and the TAM to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAM. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1’s action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAM both by blocking Nano-DOX-induced PD-L1 in the TAM and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAM with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX’s action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. Conclusions: PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAM to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAM, achieves enhanced activation of TAM-mediated anti-tumor response.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Junya Ning ◽  
Zhaomin Lin ◽  
Xuan Zhao ◽  
Baoxiang Zhao ◽  
Junying Miao

Abstract The level of hypochlorous acid (HOCl) in cancer cells is higher than that in non-cancer cells. HOCl is an essential signal for the regulation of cell fate and works mainly through the protein post-translational modifications in cancer cells. However, the mechanism of HOCl regulating autophagy has not been clarified. Here we reported that a HOCl probe named ZBM-H targeted endoplasmic reticulum and induced an intact autophagy flux in lung cancer cells. Furthermore, ZBM-H promoted the binding of GRP78 to AMPK and increased the phosphorylation of AMPK in a dose- and time-dependent manner. GRP78 knockdown inhibited ZBM-H-induced AMPK phosphorylation and ZBM-H-stimulated autophagy. In addition, mass spectrometry combined with point mutation experiments revealed that ZBM-H increased GRP78 activity by inhibiting HOCl-induced lysine 353 oxidation of GRP78. Following ZBM-H treatment in vitro and in vivo, cell growth was significantly inhibited while apoptosis was induced. Nevertheless, exogenous HOCl partially reversed ZBM-H-inhibited cell growth and ZBM-H-induced GRP78 activation. In brief, we found that an endoplasmic reticulum-targeted HOCl probe named ZBM-H, acting through attenuating HOCl-induced GRP78 oxidation, inhibited tumor cell survival by promoting autophagy and apoptosis. Overall, these data demonstrated a novel mechanism of hypochlorous acid regulating autophagy by promoting the oxidation modification of GRP78.


2019 ◽  
Author(s):  
Yeon Soo Kim ◽  
Piyushi Gupta-Vallur ◽  
Victoria M. Jones ◽  
Beth L. Worley ◽  
Sara Shimko ◽  
...  

ABSTRACTCells must alter their antioxidant capacity for maximal metastatic potential. However, the antioxidant adaptations required for transcoelomic metastasis, which is the passive dissemination of cancer cells in the peritoneal cavity as seen in ovarian cancer, have largely remained unexplored. Contradicting the need for oxidant scavenging by tumor cells is the observation that expression of the nutrient stress sensor and regulator of mitochondrial antioxidant defenses, SIRT3, is suppressed in many primary tumors. We discovered that this mitochondrial deacetylase is however, upregulated in a context-dependent manner in cancer cells. SIRT3 activity and expression transiently increased following ovarian cancer cell detachment and in tumor cells derived from malignant ascites of high-grade serous adenocarcinoma patients. Mechanistically, SIRT3 prevents mitochondrial superoxide surges in detached cells by regulating the manganese superoxide dismutase SOD2. This mitochondrial stress response is under dual regulation by SIRT3. SIRT3 rapidly increases SOD2 activity as an early adaptation to cellular detachment, which is followed by SIRT3-dependent transcriptional increases in SOD2 during sustained anchorage-independence. In addition, SIRT3 inhibits glycolytic capacity in anchorage-independent cells thereby contributing to metabolic changes in response to detachment. While manipulation of SIRT3 expression has few deleterious effects on cancer cells in attached conditions, SIRT3 up-regulation and SIRT3-mediated oxidant scavenging following matrix detachment are required for anoikis resistance in vitro, and both SIRT3 and SOD2 are necessary for colonization of the peritoneal cavity in vivo. Our results highlight the novel context-specific, pro-metastatic role of SIRT3 in ovarian cancer.


2017 ◽  
Vol 43 (3) ◽  
pp. 1220-1234 ◽  
Author(s):  
Xiulian Li ◽  
Ying Lan ◽  
Yanli He ◽  
Yong Liu ◽  
Heng Luo ◽  
...  

Background/Aims: Bleomycin is a clinically used anti-cancer drug that produces DNA breaks once inside of cells. However, bleomycin is a positively charged molecule and cannot get inside of cells by free diffusion. We previously reported that the cell surface negatively charged glycosaminoglycans (GAGs) may be involved in the cellular uptake of bleomycin. We also observed that a class of positively charged small molecules has Golgi localization once inside of the cells. We therefore hypothesized that bleomycin might perturb Golgi-operated GAG biosynthesis. Methods: We used stable isotope labeling coupled with LC/MS analysis of GAG disaccharides simultaneously from bleomycin-treated and non-treated cancer cells. To further understand the cytotoxicity of bleomycin and its relationship to GAGs, we used sodium chlorate to inhibit GAG sulfation and commercially available GAGs to compete for cell surface GAG/bleomycin interactions in seven cell lines including CHO745 defective in both heparan sulfate and chondroitin sulfate biosynthesis. Results: we discovered that heparan sulfate GAG was significantly undersulfated and the quantity and disaccharide compositions of GAGs were changed in bleomycin-treated cells in a concentration- and time-dependent manner. We revealed that bleomycin-induced cytotoxicity was directly related to cell surface GAGs. Conclusion: GAGs were targeted by bleomycin both at cell surface and at Golgi. Thus, GAGs might be the biological relevant molecules that might be related to the bleomycin-induced fibrosis in certain cancer patients, a severe side effect with largely unknown molecular mechanism.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yueh-Chiao Yeh ◽  
Tsun-Jui Liu ◽  
Hui-Chin Lai

Shikonin, a natural naphthoquinone pigment isolated fromLithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice.


Plasma ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 201-217 ◽  
Author(s):  
Sander Bekeschus ◽  
Can Wulf ◽  
Eric Freund ◽  
Dominique Koensgen ◽  
Alexander Mustea ◽  
...  

Cancers modulate their microenvironment to favor their growth. In particular, monocytes and macrophages are targeted by immuno-modulatory molecules installed by adjacent tumor cells such as ovarian carcinomas. Cold physical plasma has recently gained attention as innovative tumor therapy. We confirmed this for the OVCAR-3 and SKOV-3 ovarian cancer cell lines in a caspase 3/7 independent and dependent manner, respectively. To elaborate whether plasma exposure interferes with their immunomodulatory properties, supernatants of control and plasma-treated tumor cells were added to human THP-1 monocyte cultures. In the latter, modest effects on intracellular oxidation or short-term metabolic activity were observed. By contrast, supernatants of plasma-treated cancer cells abrogated significant changes in morphological and phenotypic features of THP-1 cells compared to those cultured with supernatants of non-treated tumor cell counterparts. This included cell motility and morphology, and modulated expression patterns of nine cell surface markers known to be involved in monocyte activation. This was particularly pronounced in SKOV-3 cells. Further analysis of tumor cell supernatants indicated roles of small particles and interleukin 8 and 18, with MCP1 presumably driving activation in monocytes. Altogether, our results suggest plasma treatment to alleviate immunomodulatory secretory products of ovarian cancer cells is important for driving a distinct myeloid cell phenotype.


2021 ◽  
Vol 11 ◽  
Author(s):  
Amanda M. Clark ◽  
Haley L. Heusey ◽  
Linda G. Griffith ◽  
Douglas. A. Lauffenburger ◽  
Alan Wells

Metastatic breast cancer remains a largely incurable and fatal disease with liver involvement bearing the worst prognosis. The danger is compounded by a subset of disseminated tumor cells that may lie dormant for years to decades before re-emerging as clinically detectable metastases. Pathophysiological signals can drive these tumor cells to emerge. Prior studies indicated CXCR3 ligands as being the predominant signals synergistically and significantly unregulated during inflammation in the gut-liver axis. Of the CXCR3 ligands, IP-10 (CXCL10) was the most abundant, correlated significantly with shortened survival of human breast cancer patients with metastatic disease and was highest in those with triple negative (TNBC) disease. Using a complex ex vivo all-human liver microphysiological (MPS) model of dormant-emergent metastatic progression, CXCR3 ligands were found to be elevated in actively growing populations of metastatic TNBC breast cancer cells whereas they remained similar to the tumor-free hepatic niche in those with dormant breast cancer cells. Subsequent stimulation of dormant breast cancer cells in the ex vivo metastatic liver MPS model with IP-10 triggered their emergence in a dose-dependent manner. Emergence was indicated to occur indirectly possibly via activation of the resident liver cells in the surrounding metastatic microenvironment, as stimulation of breast cancer cells with exogenous IP-10 did not significantly change their migratory, invasive or proliferative behavior. The findings reveal that IP-10 is capable of triggering the emergence of dormant breast cancer cells within the liver metastatic niche and identifies the IP-10/CXCR3 as a candidate targetable pathway for rational approaches aimed at maintaining dormancy.


2019 ◽  
Author(s):  
Tim D.D. Somerville ◽  
Giulia Biffi ◽  
Juliane Daßler-Plenker ◽  
Koji Miyabayashi ◽  
Yali Xu ◽  
...  

AbstractA highly aggressive subset of pancreatic ductal adenocarcinomas undergo trans-differentiation into the squamous lineage during disease progression. While the tumorigenic consequences of this aberrant cell fate transition are poorly understood, recent studies have identified a role for the master regulator TP63 in this process. Here, we investigated whether squamous trans-differentiation of pancreatic cancer cells can influence the phenotype of non-neoplastic cells in the tumor microenvironment. Conditioned media experiments revealed that squamous-subtype pancreatic cancer cells secrete factors that convert quiescent pancreatic stellate cells into a specialized subtype of cancer-associated fibroblasts (CAFs) that express inflammatory genes at high levels. We use gain- and loss-of-function approaches in vivo to show that squamous-subtype pancreatic tumor models become enriched with inflammatory CAFs and neutrophils in a TP63-dependent manner. These non cell-autonomous effects occur, at least in part, through TP63-mediated activation of enhancers at pro-inflammatory cytokine loci, which includes IL1A as a key target. Taken together, our findings reveal enhanced tissue inflammation as a consequence of squamous trans-differentiation in pancreatic cancer, thus highlighting an instructive role of tumor cell lineage in reprogramming the stromal microenvironment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2698-2698
Author(s):  
Sajid Khan ◽  
Xuan Zhang ◽  
Dongwen Lv ◽  
Yonghan He ◽  
Peiyi Zhang ◽  
...  

Abstract The evasion of apoptosis, or programmed cell death, is a hallmark of cancer, which promotes tumor initiation and progression. The evasion is in part attributable to the over-expression of anti-apoptotic proteins in the Bcl-2 family. In addition, chemotherapy and radiation can upregulate the expression of the Bcl-2 family in cancer cells, which renders them more resistance to cancer therapy. The most common Bcl-2 family member over-expressed in many solid tumor cells and a fraction of leukemia and lymphoma cells is Bcl-XL and its expression is also highly correlated with resistance to cancer therapy independent of p53 status in many cancers. Therefore, Bcl-XL is one of the most important validated cancer cell targets. Inhibition of Bcl-XL with a small molecule inhibitor has been extensively exploited as a molecularly targeted therapeutic strategy against cancer, resulting in the discovery of several Bcl-2/XL and Bcl-XL inhibitors as promising anti-cancer drug candidates including navitoclax. Unfortunately, these inhibitors failed to become anticancer drugs because platelets are also dependent on Bcl-XL for survival. Therefore, inhibition of Bcl-XL with Bcl-2/XL and Bcl-XL inhibitors causes severe reduction in platelets or thrombocytopenia, an on-target and dose-limiting toxicity, which prevents their use as an effective anticancer drug in clinic. To overcome this problem, we generated a series of novel bifunctional molecules that targeting Bcl-XL to the ubiquitin-proteasome system (UPS) for degradation. These synthetic proteolytic compounds, termed synthetic proteolytics (Syntholytics) or proteolysis targeting chimeras (PROTACs), were rationally designed to recruit the Von Hippel Lindau (VHL) E3 ligase to ubiquitinate Bcl-XL for degradation by the proteasome. Because VHL is minimally expressed in platelets, our Bcl-XL Syntholytics can selectively induce Bcl-XL degradation in various cancer cells but not in platelets. Amongst these Bcl-XL Syntholytics, DT2216 was found to be the most potent in inducing Bcl-XL degradation leading to the loss of viability of Bcl-XL-dependent T-ALL MOLT-4 cells at nanomolar concentrations but did not cause any platelet toxicity. Compared to navitoclax, DT2216 is more potent in induction of apoptosis in a variety of cancer and leukemia cells in vitro in a caspase-dependent manner. Furthermore, our in vivo studies in immunocompromised mice revealed that DT2216 at 15 mg/kg/wk potently inhibited tumor growth in Bcl-XL-dependent MOLT-4 T-ALL xenografts as a single agent whereas navitoclax had no significant effect at the same dosage. Dosing with DT2216 at 15 mg/kg every four days significantly regressed larger established MOLT-4 T-ALL tumors that failed to respond to navitoclax treatment. To assess the therapeutic potential of DT2216 in combination with other Bcl-2 family inhibitors, we employed the Bcl-2/xl dependent NCI-H146 small cell lung cancer cells and the Mcl1/Bcl-xl dependent multiple myeloma EJM cells. The combination of DT2216 with Bcl-2 inhibitor (ABT199) or Mcl-1 inhibitor (S63845) synergistically reduced the viability of H146 and EJM cells, respectively. DT2216 in combination with ABT199 effectively inhibited tumor growth in H146 xenografts. Collectively, our findings suggest that targeting Bcl-XL using Bcl-XL Syntholytics can selectively kill Bcl-XL-dependent T-ALL cells and various solid tumor cells without causing significant platelet toxicity. Moreover, the combination of Bcl-XL Syntholytics with other Bcl-2 protein inhibitors could be used to effectively target multiple cancer types including both hematological and solid tumors. Therefore, Bcl-XL Syntholytics have the potential to be developed as safer and more potent novel anti-cancer drugs. Keywords: Bcl-XL, VHL, Protein degradation, T-ALL, Cancer, Apoptosis Disclosures: S.K., X.Z., D.L., Y.H., P.Z., X. L., G. Z., and D.Z. are inventors of a pending patent application for use of Bcl-xl syntholytics as anti-cancer agents. R.H, G.Z. and D.Z. are co-founders of Dialectic Therapeutics that develops Bcl-xl syntholytics. Disclosures Khan: Dialectic Therapeutics: Patents & Royalties. Lv:Dialectic Therapeutics: Patents & Royalties. He:Dialectic Therapeutics: Patents & Royalties. Zhang:Dialectic Therapeutics: Patents & Royalties. Liu:Dialectic Therapeutics: Patents & Royalties. Konopleva:Stemline Therapeutics: Research Funding. Zheng:Dialectic Therapeutics: Consultancy, Equity Ownership, Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document