scholarly journals CoQ10 Enhances the Efficacy of Airway Basal Stem Cell Transplantation on Bleomycin-induced Idiopathic Pulmonary Fibrosis in Mice

Author(s):  
Huanbin Liu ◽  
Yidi Zhang ◽  
Jinjun Jiang ◽  
Yulong Luo ◽  
Jingxin Zhao ◽  
...  

Abstract Background: Recent studies have demonstrated that airway basal stem cells (BCs) transplantation can ameliorate bleomycin-induced idiopathic pulmonary fibrosis (IPF) through lung regeneration promotion. However, BCs under oxidative stress in the alveolar microenvironment are poor in survival, causing unsatisfied efficacy of BCs transplantation. In this study, we investigated whether Coenzyme Q10(CoQ10) counteracts oxidative stress in the alveolar microenvironment, thus improved the efficacy of BCs transplantation for IPF treatment.Methods: The protective effects of CoQ10 on H2O2-induced BCs apoptosis and cytoplasmic reactive oxygen species (ROS) level were tested by flow cytometry in vitro. The therapeutic effects of BCs combined with CoQ10 were compared to a single BCs transplantation protocol in IPF treatment after two weeks and were evaluated by parameters including changes of body weight and survival rate, as well as various levels of pulmonary inflammation, α-SMA expression and hydroxyproline (HYP) in IPF mice lung tissues.Results: CoQ 10 preincubation with BCs (10 mM, 24 h) significantly reduced the late apoptosis of BCs and the number of oxidative stressful BCs as a result of H2O2 stimulation (1mM, 6h) in vitro. IPF mice models were constructed through bleomycin (5 mg/Kg) intratracheal instillation. Bleomycin-induced IPF mice showed weight loss continuously and mortality increased progressively during modeling. Serious pulmonary inflammatory cell infiltration, collagen fiber proliferation, and collagen protein deposition were observed in lung tissues of IPF mice. Though BCs transplantation alone improved indicators above in bleomycin-induced IPF mice to some extent, the combination with CoQ10 improved the transplantation efficacy and obtained better therapeutic effects.Conclusion:CoQ10 blocked H2O2-induced apoptosis of BCs and ROS production in vitro, and enhanced the efficacy of BCs transplantation on bleomycin-induced IPF in mice.

2021 ◽  
Vol 11 (8) ◽  
pp. 3637
Author(s):  
Jun-Ho Chang ◽  
Dae-Won Kim ◽  
Seong-Gon Kim ◽  
Tae-Woo Kim

Damaged dental pulp undergoes oxidative stress and 4-hexylresorcinol (4HR) is a well-known antioxidant. In this study, we aimed to evaluate the therapeutic effects of a 4HR ointment on damaged dental pulp. Pulp cells from rat mandibular incisor were cultured and treated with 4HR or resveratrol (1–100 μM). These treatments (10–100 μM) exerted a protective effect during subsequent hydrogen peroxide treatments. The total antioxidant capacity and glutathione peroxidase activity were significantly increased following 4HR or resveratrol treatment (p < 0.05), while the expression levels of TNF-α and IL1β were decreased following the exposure to 4HR pre-treatment in an in vitro model. Additionally, the application of 4HR ointment in an exposed dental pulp model significantly reduced the expression of TNF-α and IL1β (p < 0.05). Conclusively, 4HR exerted protective effects against oxidative stress in dental pulp tissues through downregulating TNF-α and IL1β.


2021 ◽  
Vol 14 (12) ◽  
pp. 1225
Author(s):  
Mohammed H. Elkomy ◽  
Rasha A. Khallaf ◽  
Mohamed O. Mahmoud ◽  
Raghda R. S. Hussein ◽  
Asmaa M. El-Kalaawy ◽  
...  

Pulmonary fibrosis is a serious ailment that may progress to lung remodeling and demolition, where the key participants in its incidence are fibroblasts responding to growth factors and cellular calcium swinging. Calcium channel blockers, like nifedipine (NFD), may represent auspicious agents in pulmonary fibrosis treatment. Unfortunately, NFD bears complicated pharmacodynamics and a diminished systemic bioavailability. Thus, the current study aimed to develop a novel, non-invasive nanoplatform for NFD for direct/effective pulmonary targeting via intratracheal instillation. A modified solvent emulsification–evaporation method was adopted for the fabrication of NFD-nanocomposites, integrating poly(D,L-lactide-co-glycolide) (PLGA), chitosan (CTS), and polyvinyl alcohol, and optimized for different physiochemical properties according to the 32 full factorial design. Additionally, the aerodynamic behavior of the nanocomposites was scrutinized through cascade impaction. Moreover, the pharmacokinetic investigations were conducted in rats. Furthermore, the optimum formulation was tested in bleomycin-induced pulmonary fibrosis in rats, wherein fibrotic and oxidative stress parameters were measured. The optimum nanocomposites disclosed a nanosized spherical morphology (226.46 nm), a high entrapment efficiency (61.81%) and a sustained release profile over 24 h (50.4%). As well, it displayed a boosted in vitro lung deposition performance with a mass median aerodynamic diameter of 1.12 µm. Pharmacokinetic studies manifested snowballed bioavailability of the optimal nanocomposites by 3.68- and 2.36-fold compared to both the oral and intratracheal suspensions, respectively. The intratracheal nanocomposites revealed a significant reduction in lung fibrotic and oxidative stress markers notably analogous to normal control besides repairing abnormality in TGF-β/β-catenin pathway. Our results conferred a compelling proof-of-principle that NFD-CTS-PLGA nanocomposites can function as a promising nanoparadigm for pulmonary fibrosis management.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1064
Author(s):  
Alessandro G. Fois ◽  
Elisabetta Sotgiu ◽  
Valentina Scano ◽  
Silvia Negri ◽  
Sabrina Mellino ◽  
...  

Introduction: In vitro evidence suggests that pirfenidone and nintedanib, approved agents for the treatment of idiopathic pulmonary fibrosis (IPF), exert anti-inflammatory and anti-oxidant effects. We aimed to investigate such effects in vivo in IPF patients. Methods: Systemic circulating markers of oxidative stress [nuclear factor erythroid 2–related factor 2 (Nrf2), thiobarbituric acid- reactive substances (TBARS), homocysteine (Hcy), cysteine (Cys), asymmetric dimethylarginine (ADMA) and ADMA/Arginine ratio, glutathione (GSH), plasma protein –SH (PSH), and taurine (Tau)] and inflammation [Kynurenine (Kyn), Tryptophan (Trp) and Kyn/Trp ratio] were measured at baseline and after 24-week treatment in 18 IPF patients (10 treated with pirfenidone and 8 with nintedanib) and in 18 age- and sex-matched healthy controls. Results: Compared to controls, IPF patients had significantly lower concentrations of reduced blood GSH (457 ± 73 µmol/L vs 880 ± 212 µmol/L, p < 0.001) and plasma PSH (4.24 ± 0.95 µmol/g prot vs 5.28 ± 1.35 µmol/g prot, p = 0.012). Pirfenidone treatment significantly decreased the Kyn/Trp ratio (0.030 ± 0.011 baseline vs 0.025 ± 0.010 post-treatment, p = 0.048) whilst nintedanib treatment significantly increased blood GSH (486 ± 70 μmol/L vs 723 ± 194 μmol/L, p = 0.006) and reduced ADMA concentrations (0.501 ± 0.094 vs. 0.468 ± 0.071 μmol/L, p = 0.024). Conclusion: pirfenidone and nintedanib exert beneficial effects on specific markers of oxidative stress and inflammation in IPF patients.


2020 ◽  
Vol 26 (33) ◽  
pp. 4185-4194
Author(s):  
Jing-Jing Zhu ◽  
Shu-Hui Wu ◽  
Xiang Chen ◽  
Ting-Ting Jiang ◽  
Xin-Qian Li ◽  
...  

Background: The aim of the present study was to investigate the protective effects of Tanshinone IIA (Tan IIA) on hypoxia-induced injury in the medial vestibular nucleus (MVN) cells. Methods: An in vitro hypoxia model was established using MVN cells exposed to hypoxia. The hypoxia-induced cell damage was confirmed by assessing cell viability, apoptosis and expression of apoptosis-associated proteins. Oxidative stress and related indicators were also measured following hypoxia modeling and Tan IIA treatment, and the genes potentially involved in the response were predicted using multiple GEO datasets. Results: The results of the present study showed that Tan IIA significantly increased cell viability, decreased cell apoptosis and decreased the ratio of Bax/Bcl-2 in hypoxia treated cells. In addition, hypoxia treatment increased oxidative stress in MVN cells, and treatment with Tan IIA reduced the oxidative stress. The expression of SPhase Kinase Associated Protein 2 (SKP2) was upregulated in hypoxia treated cells, and Tan IIA treatment reduced the expression of SKP2. Mechanistically, SKP2 interacted with large-conductance Ca2+-activated K+ channels (BKCa), regulating its expression, and BKCa knockdown alleviated the protective effects of Tan IIA on hypoxia induced cell apoptosis. Conclusion: The results of the present study suggested that Tan IIA had a protective effect on hypoxia-induced cell damage through its anti-apoptotic and anti-oxidative activity via an SKP2/BKCa axis. These findings suggest that Tan IIA may be a potential therapeutic for the treatment of hypoxia-induced vertigo.


2004 ◽  
Vol 92 (6) ◽  
pp. 887-894 ◽  
Author(s):  
R.-F. S. Huang ◽  
H.-C. Yaong ◽  
S.-C. Chen ◽  
Y.-F. Lu

Folate has recently been proposed as a new antioxidant. Folate supplementation may have a protective effect in counteracting oxidant-induced apoptotic damage. The present studies were undertaken to examine whether there is a direct link between folate levels, antioxidant capability and reduced apoptotic damage. Using anin vitrocellular model of 7-ketocholesterol (KC)-induced apoptosis, U937 cells were pre-cultured with a folate-deficient medium supplemented with various levels of folate (2–1500μmol/l) before treatment with 7-KC. Apoptotic markers, mitochondria-associated death signals and levels of reactive oxygen species were assayed. After treatment with 7-KC for 30h, low and high levels of folate supplementation significantly (P<0.05) reduced nuclear DNA loss. Only high levels of folate supplementation (>1000μmol/l) were effective in counteracting 7-KC-promoted apoptotic membrane phosphatidylserine exposure and DNA laddering. The attenuation of 7-KC-induced apoptotic damage by high-dose folate supplementation coincided with a partial normalization of mitochondria membrane potential dissipation, a suppression of cytochromecrelease and an inhibition of procaspase 3 activation. The prevention of mitochondrial dysfunctions and apoptotic processes was associated with antioxidant actions of high-dose folate by a marked scavenging of intracellular superoxide. Collectively, our present results demonstrate thatin vitrofolate supplementation exerts differentially protective effects against 7-KC-induced damage. High-dose supplementation alleviates oxidative stress, mitochondria-associated death signalling and apoptosis induced by 7-KC. However, thein vivorelevance is not clear and requires further study.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaofan Lai ◽  
Shaojie Huang ◽  
Sijia Lin ◽  
Lvya Pu ◽  
Yaqing Wang ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive deadly fibrotic lung disease with high prevalence and mortality worldwide. The therapeutic potential of mesenchymal stem cells (MSCs) in pulmonary fibrosis may be attributed to the strong paracrine, anti-inflammatory, anti-apoptosis and immunoregulatory effects. However, the mechanisms underlying the therapeutic effects of MSCs in IPF, especially in terms of alveolar type 2 (AT2) cells senescence, are not well understood. The purpose of this study was to evaluate the role of MSCs in NAD metabolism and senescence of AT2 cells in vitro and in vivo. Methods MSCs were isolated from human bone marrow. The protective effects of MSCs injection in pulmonary fibrosis were assessed via bleomycin mouse models. The senescence of AT2 cells co-cultured with MSCs was evaluated by SA-β-galactosidase assay, immunofluorescence staining and Western blotting. NAD+ level and NAMPT expression in AT2 cells affected by MSCs were determined in vitro and in vivo. FK866 and NAMPT shRNA vectors were used to determine the role of NAMPT in MSCs inhibiting AT2 cells senescence. Results We proved that MSCs attenuate bleomycin-induced pulmonary fibrosis in mice. Senescence of AT2 cells was alleviated in MSCs-treated pulmonary fibrosis mice and when co-cultured with MSCs in vitro. Mechanistic studies showed that NAD+ and NAMPT levels were rescued in AT2 cells co-cultured with MSCs and MSCs could suppress AT2 cells senescence mainly via suppressing lysosome-mediated NAMPT degradation. Conclusions MSCs attenuate AT2 cells senescence by upregulating NAMPT expression and NAD+ levels, thus exerting protective effects in pulmonary fibrosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhaojuan Guo ◽  
Siru Li ◽  
Nan Zhang ◽  
Qianjun Kang ◽  
Huaqiang Zhai

Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause and limited to the lungs. Schisandrae chinensis fructus (Wuweizi, Schisandra) is commonly used traditional Chinese medicines (TCM) for the treatment of pulmonary fibrosis, bronchitis, and other lung diseases in China. In this study, we investigated the therapeutic effect of Schisandra on IPF which is induced by bleomycin (BLM) in rats and the inhibition of alternatively activated macrophage (M2) polarization. Bleomycin-induced pulmonary fibrosis was used as a model for IPF, and rats were given drug interventions for 7 and 28 days to evaluate the role of Schisandra in the early oxidative phase and late fibrotic phases of BLM-induced pulmonary injury. The data showed that Schisandra exerted protective effects on BLM-induced pulmonary injury in two phases, which were improving inflammatory cell infiltration and severe damages of lung architectures and decreasing markers of M2 subtype. In order to prove the inhibitory effect of Schisandra on M2 polarization, in vitro experiments, we found that Schisandra downregulated the M2 ratio, which confirmed that the polarization of M2 was suppressed. Moreover, Schisandra blocked TGF-β1 signaling in AMs by reducing the levels of Smad3 and Smad4; meanwhile, the upregulation of Smad7 by Schisandra also promoted the effect of inhibition on the TGF-β1/Smad pathway. These results demonstrate that suppression of M2 polarization by Schisandra is associated with the development of IPF in rats.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Lie-Qiang Xu ◽  
Xiu-Ting Yu ◽  
Shu-Hua Gui ◽  
Jian-hui Xie ◽  
Xiu-Fen Wang ◽  
...  

Li-Fei-Xiao-Yan prescription (LFXY) has been clinically used in China to treat inflammatory and infectious diseases including inflammatory lung diseases. The present study was aimed at evaluating the potential therapeutic effects and potential mechanisms of LFXY in a murine model of lipopolysaccharide- (LPS-) induced acute lung injury (ALI). In this study, the mice were orally pretreated with LFXY or dexamethasone (positive drug) before the intratracheal instillation of LPS. Our data indicated that pretreatment with LFXY enhanced the survival rate of ALI mice, reversed pulmonary edema and permeability, improved LPS-induced lung histopathology impairment, suppressed the excessive inflammatory responsesviadecreasing the expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokine (MIP-2) and inhibiting inflammatory cells migration, and repressed oxidative stress through the inhibition of MPO and MDA contents and the upregulation of antioxidants (SOD and GSH) activities. Mechanistically, treatment with LFXY significantly prevented LPS-induced TLR4 expression and NF-κB (p65) phosphorylation. Overall, the present study suggests that LFXY protected mice from acute lung injury induced by LPSviainhibition of TLR4/NF-κB p65 activation and upregulation of antioxidative enzymes and it may be a potential preventive and therapeutic agent for ALI in the clinical setting.


2020 ◽  
Vol 15 (3) ◽  
pp. 1934578X2091147
Author(s):  
Na Li ◽  
Dongdong Xin ◽  
Hongbo Li ◽  
Yanyan Zhao ◽  
Wei Zhou ◽  
...  

Fluoride is an essential trace element, but its beneficial range is narrow, and excess fluoride may have negative health effects. The objective of this study was to investigate the potential cytoprotective effects of epigallocatechin-3-gallate (EGCG) in cultured neuro-2a neuroblastoma cells exposed to sodium fluoride (NaF)-induced oxidative stress. Isolated Neuro-2a cells were exposed to increasing concentrations of NaF (0, 1, 2, 4, 6, and 8 mM) for 24 hours to induce oxidative stress. Moreover, to determine the concentration of EGCG necessary for protective effects, we exposed isolated Neuro-2a cells to increasing concentrations of EGCG (0, 0.5, 1, 5, 10, 20, 40, 60, 80, and 100 μg/mL) for 24 and 48 hours. Pretreatment with EGCG at various doses (0, 0.5, 1, 5, 10, 20, and 40 μg/mL) was evaluated in Neuro-2a cells for 24 hours, followed by an NaF (4 mM per culture well) challenge for 24 hours. As shown in this study, EGCG can protect Neuro-2a cells from NaF-induced apoptosis. This effect may be due to the reactive oxygen species scavenging activity of EGCC.


Sign in / Sign up

Export Citation Format

Share Document