scholarly journals Construction and Validation of an Immune-related lncRNA Prognosis Model in Thyroid Cancer

Author(s):  
Zheng Li ◽  
Hui Wang ◽  
Xia Deng ◽  
Jing Zhang ◽  
Wanyan Tang ◽  
...  

Abstract Background A growing number of studies have shown that immune-related long non-coding RNAs (lncRNAs) play an important role in the development of cancer. The aim of this study was to identify immune-related lncRNAs in thyroid cancer (THCA) and to develop a prognostic model for THCA. Methods We downloaded immune-associated gene sets from the Gene Set Enrichment Analysis (GSEA) website and obtained THCA gene expression and clinical data from The Cancer Genome Atlas (TCGA) database. Immune-related lncRNAs were then obtained by performing a correlation analysis of the expression of lncRNAs and immune-related genes. Prognostic models for THCA immune-related lncRNAs were developed by univariate Cox regression and multiple Cox regression analysis. We confirmed the results in clinical samples using quantitative reverse transcription polymerase chain reaction (qRT-PCR).Results26 immune-related lncRNAs in THCA were obtained. Then we constructed a prognosis model composed of 7 lncRNAs (LINC01614, AC017074.1, LINC01184, LINC00667, ACVR2B-AS1, AC090673.1, LINC00900). Our model could be used as an independent prognostic factor. Principal component analysis displayed that the lncRNAs in the model can distinguish between high-risk and low-risk groups. Clinical correlation analysis showed that the expression levels of AC090673.1 (P<0.05), LINC01184 (P<0.001), LINC01614 (P<0.001) were related to disease stage, LINC00900 (P<0.001), LINC01614 (P<0.001) were related to the T stage of THCA. We validated this model in the cancer and paracancerous tissues from 24 THCA patients.ConclusionsWe identified seven immune-related lncRNAs as potential biomarkers for the prognosis of THCA.

2021 ◽  
Author(s):  
Zheng Li ◽  
Hui Wang ◽  
Xia Deng ◽  
Jing Zhang ◽  
Wanyan Tang ◽  
...  

Abstract Background: Immune-related long noncoding RNAs (lncRNAs) play an important role in the development of cancer. This study aimed to identify immune-related lncRNAs in thyroid cancer (THCA) and to develop a prognostic model for THCA. Method: We downloaded immune-related gene sets from the Gene Set Enrichment Analysis (GSEA) website and obtained THCA gene expression and clinical data from The Cancer Genome Atlas (TCGA) database. Immune-related lncRNAs were then obtained by performing a correlation analysis on the expression of lncRNAs and immune-related genes. Prognostic model for THCA immune-related lncRNAs was developed though univariate Cox regression and multiple Cox regression analyses. We confirmed the results in clinical samples using quantitative real-time PCR. Results: A totally of 26 immune-related lncRNAs in THCA were obtained. Then we constructed a prognosis model composed of seven lncRNAs (LINC01614, AC017074.1, LINC01184, LINC00667, ACVR2B-AS1, AC090673.1 and LINC00900). Our model can be used as an independent prognostic factor. Principal component analysis displayed that the lncRNAs in the model can distinguish between high and low-risk groups. Clinical correlation analysis showed that the expression levels of AC090673.1 (P<0.05), LINC01184 (P<0.001), and LINC01614 (P<0.001) were related to disease stage, and LINC00900 (P<0.001) and LINC01614 (P<0.001) were related to T stage. We validated this model in cancer and paracancerous tissues from 24 THCA patients. Conclusion: We identified and experimentally validated seven immune-related lncRNAs that can serve as potential biomarkers for THCA prognosis.


2021 ◽  
Author(s):  
Lili Li ◽  
Rongrong Xie ◽  
Qichun Wei

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of mortality worldwide. N6-methyladenosine (m6A) methyltransferase, has been proved to act as an oncogene in several human cancers. However, little is known about its relationship with the long non-coding RNAs (lncRNAs) that remains elusive in HCC.Methods: We comprehensively integrated gene expression data acquired from 371 HCC and 50 normal tissues in The Cancer Genome Atlas (TCGA) database. Differentially expressed protein-coding genes (DE-PCGs)/lncRNAs (DE-lncRs) analysis and univariate regression & Kaplan-Meier (K-M) analysis was performed to identify m6A methyltransferase‑related lncRNAs that were related to overall survival (OS). m6A methyltransferase‑related lncRNA signature was constructed using the Least absolute shrinkage and selection operator (LASSO) Cox regression analyses. Furthermore, Cox regression analysis was applied to identify independent prognostic factors in HCC. The signature was validated in an internal validation set. Finally, the correlation analysis between gene signature and immune cells infiltration was also investigated via single-sample Gene Set Enrichment Analysis (ssGSEA) and immunotherapy response was calculated through Tumor Immune Dysfunction and Exclusion (TIDE) algorithm.Results: A total of 21 m6A methyltransferase-related lncRNAs were screened out according to Spearman correlation analysis with the immune score (|R| > 0.3, P < 0.05). We selected 3 prognostic lncRNAs to construct m6A methyltransferase-related lncRNA signature through univariate and LASSO Cox regression analyses. The univariate and multivariate Cox regression analyses demonstrated that the lncRNAs signature was a robust independent prognostic factor in OS prediction with high accuracy. The GSEA also suggested that the m6A methyltransferase-related lncRNAs were involved in the immune-related biological processes and pathways which were very well-known in the context of HCC tumorigenesis. Besides, we found that the lncRNAs signature was strikingly correlated with the tumor microenvironment (TME) immune cells infiltration and expression of critical immune checkpoints. Finally, results from the TIDE analysis revealed that the m6A methyltransferase-related lncRNAs could efficiently predict the clinical response of immunotherapy in HCC.Conclusion: Together, our study screened potential prognostic m6A methyltransferase related lncRNAs and established a novel m6A methyltransferase-based prognostic model of HCC, which not only provides new potential prognostic biomarkers and therapeutic targets but also deepens our understanding of tumor immune microenvironment status and lays a theoretical foundation for immunotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5837
Author(s):  
Changwu Wu ◽  
Siming Gong ◽  
Georg Osterhoff ◽  
Nikolas Schopow

Soft tissue sarcomas (STS), a group of rare malignant tumours with high tissue heterogeneity, still lack effective clinical stratification and prognostic models. Therefore, we conducted this study to establish a reliable prognostic gene signature. Using 189 STS patients’ data from The Cancer Genome Atlas database, a four-gene signature including DHRS3, JRK, TARDBP and TTC3 was established. A risk score based on this gene signature was able to divide STS patients into a low-risk and a high-risk group. The latter had significantly worse overall survival (OS) and relapse free survival (RFS), and Cox regression analyses showed that the risk score is an independent prognostic factor. Nomograms containing the four-gene signature have also been established and have been verified through calibration curves. In addition, the predictive ability of this four-gene signature for STS metastasis free survival was verified in an independent cohort (309 STS patients from the Gene Expression Omnibus database). Finally, Gene Set Enrichment Analysis indicated that the four-gene signature may be related to some pathways associated with tumorigenesis, growth, and metastasis. In conclusion, our study establishes a novel four-gene signature and clinically feasible nomograms to predict the OS and RFS. This can help personalized treatment decisions, long-term patient management, and possible future development of targeted therapy.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Sihan Chen ◽  
Guodong Cao ◽  
Wei Wu ◽  
Yida Lu ◽  
Xiaobo He ◽  
...  

Abstract Colon adenocarcinoma (COAD) is a malignant gastrointestinal tumor, often occurring in the left colon, which is regulated by glycolysis-related processes. In past studies, multiple genes that influence the prognosis for survival have been discovered through bioinformatics analysis. However, the prediction of disease prognosis using a single gene is not an accurate method. In the present study, a mechanistic model was established to achieve better prediction for the prognosis of COAD. COAD-related data downloaded from The Cancer Genome Atlas (TCGA) were correlated with the glycolysis process using gene set enrichment analysis (GSEA) to determine the glycolysis-related genes that regulate COAD. Using COX regression analysis, glycolysis-related genes associated with the prognosis of COAD were identified, and the genes screened to establish a predictive model. The risk scores of this model were correlated with relevant clinical data to obtain a connection diagram between the model and survival rate, tumor characteristic data, etc. Finally, genes in the model were correlated with cells in the tumor microenvironment, finding that they affected specific immune cells in the model. Seven genes related to glycolysis were identified (PPARGC1A, DLAT, 6PC2, P4HA1, STC2, ANKZF1, and GPC1), which affect the prognosis of patients with COAD and constitute the model for prediction of survival of COAD patients.


2019 ◽  
Vol 28 (4) ◽  
pp. 439-447 ◽  
Author(s):  
Yan Jiao ◽  
Yanqing Li ◽  
Bai Ji ◽  
Hongqiao Cai ◽  
Yahui Liu

Background and Aims: Emerging studies indicate that long noncoding RNAs (lncRNAs) play a role as prognostic markers in many cancers, including liver cancer. Here, we focused on the lncRNA lung cancer-associated transcript 1 (LUCAT1) for liver cancer prognosis. Methods: RNA-seq and phenotype data were downloaded from the Cancer Genome Atlas (TCGA). Chisquare tests were used to evaluate the correlations between LUCAT1 expression and clinical features. Survival analysis and Cox regression analysis were used to compare different LUCAT1 expression groups (optimal cutoff value determined by ROC). The log-rank test was used to calculate the p-value of the Kaplan-Meier curves. A ROC curve was used to evaluate the diagnostic value. Gene Set Enrichment Analysis (GSEA) was performed, and competing endogenous RNA (ceRNA) networks were constructed to explore the potential mechanism. Results: Data mining of the TCGA -Liver Hepatocellular Carcinoma (LIHC) RNA-seq data of 371 patients showed the overexpression of LUCAT1 in cancerous tissue. High LUCAT1 expression was associated with age (p=0.007), histologic grade (p=0.009), T classification (p=0.022), and survival status (p=0.002). High LUCAT1 patients had a poorer overall survival and relapse-free survival than low LUCAT1 patients. Multivariate analysis identified LUCAT1 as an independent risk factor for poor survival. The ROC curve indicated modest diagnostic performance. GSEA revealed the related signaling pathways, and the ceRNA network uncovered the underlying mechanism. Conclusion: High LUCAT1 expression is an independent prognostic factor for liver cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Honglan Guo ◽  
Qinqiao Fan

Background. We aimed to investigate the expression of the hyaluronan-mediated motility receptor (HMMR) gene in hepatocellular carcinoma (HCC) and nonneoplastic tissues and to investigate the diagnostic and prognostic value of HMMR. Method. With the reuse of the publicly available The Cancer Genome Atlas (TCGA) data, 374 HCC patients and 50 nonneoplastic tissues were used to investigate the diagnostic and prognostic values of HMMR genes by receiver operating characteristic (ROC) curve analysis and survival analysis. All patients were divided into low- and high-expression groups based on the median value of HMMR expression level. Univariate and multivariate Cox regression analysis were used to identify prognostic factors. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanism of the HMMR genes involved in HCC. The diagnostic and prognostic values were further validated in an external cohort from the International Cancer Genome Consortium (ICGC). Results. HMMR mRNA expression was significantly elevated in HCC tissues compared with that in normal tissues from both TCGA and the ICGC cohorts (all P values <0.001). Increased HMMR expression was significantly associated with histologic grade, pathological stage, and survival status (all P values <0.05). The area under the ROC curve for HMMR expression in HCC and normal tissues was 0.969 (95% CI: 0.948–0.983) in the TCGA cohort and 0.956 (95% CI: 0.932–0.973) in the ICGC cohort. Patients with high HMMR expression had a poor prognosis than patients with low expression group in both cohorts (all P < 0.001 ). Univariate and multivariate analysis also showed that HMMR is an independent predictor factor associated with overall survival in both cohorts (all P values <0.001). GSEA showed that genes upregulated in the high-HMMR HCC subgroup were mainly significantly enriched in the cell cycle pathway, pathways in cancer, and P53 signaling pathway. Conclusion. HMMR is expressed at high levels in HCC. HMMR overexpression may be an unfavorable prognostic factor for HCC.


2021 ◽  
Vol 7 ◽  
Author(s):  
Xiaoyu Deng ◽  
Qinghua Bi ◽  
Shihan Chen ◽  
Xianhua Chen ◽  
Shuhui Li ◽  
...  

Although great progresses have been made in the diagnosis and treatment of hepatocellular carcinoma (HCC), its prognostic marker remains controversial. In this current study, weighted correlation network analysis and Cox regression analysis showed significant prognostic value of five autophagy-related long non-coding RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and CYTOR) for HCC patients from data in The Cancer Genome Atlas. By using them, we constructed a five-AR-lncRNA prognostic signature, which accurately distinguished the high- and low-risk groups of HCC patients. All of the five AR lncRNAs were highly expressed in the high-risk group of HCC patients. This five-AR-lncRNA prognostic signature showed good area under the curve (AUC) value (AUC = 0.751) for the overall survival (OS) prediction in either all HCC patients or HCC patients stratified according to several clinical traits. A prognostic nomogram with this five-AR-lncRNA signature predicted the 3- and 5-year OS outcomes of HCC patients intuitively and accurately (concordance index = 0.745). By parallel comparison, this five-AR-lncRNA signature has better prognosis accuracy than the other three recently published signatures. Furthermore, we discovered the prediction ability of the signature on therapeutic outcomes of HCC patients, including chemotherapy and immunotherapeutic responses. Gene set enrichment analysis and gene mutation analysis revealed that dysregulated cell cycle pathway, purine metabolism, and TP53 mutation may play an important role in determining the OS outcomes of HCC patients in the high-risk group. Collectively, our study suggests a new five-AR-lncRNA prognostic signature for HCC patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenting Liu ◽  
Kaiting Jiang ◽  
Jingya Wang ◽  
Ting Mei ◽  
Min Zhao ◽  
...  

BackgroundGlucosamine 6-phosphate N-acetyltransferase (GNPNAT1) is a key enzyme in the hexosamine biosynthetic pathway (HBP), which functions as promoting proliferation in some tumors, yet its potential biological function and mechanism in lung adenocarcinoma (LUAD) have not been explored.MethodsThe mRNA differential expression of GNPNAT1 in LUAD and normal tissues was analyzed using the Cancer Genome Atlas (TCGA) database and validated by real-time PCR. The clinical value of GNPNAT1 in LUAD was investigated based on the data from the TCGA database. Then, immunohistochemistry (IHC) of GNPNAT1 was applied to verify the expression and clinical significance in LUAD from the protein level. The relationship between GNPNAT1 and epigenetics was explored using the cBioPortal database, and the miRNAs regulating GNPNAT1 were found using the miRNA database. The association between GNPNAT1 expression and tumor-infiltrating immune cells in LUAD was observed through the Tumor IMmune Estimation Resource (TIMER). Finally, Gene set enrichment analysis (GSEA) was used to explore the biological signaling pathways involved in GNPNAT1 in LUAD.ResultsGNPNAT1 was upregulated in LUAD compared with normal tissues, which was verified through qRT-PCR in different cell lines (P &lt; 0.05), and associated with patients’ clinical stage, tumor size, and lymphatic metastasis status (all P &lt; 0.01). Kaplan–Meier (KM) analysis suggested that patients with upregulated GNPNAT1 had a relatively poor prognosis (P &lt; 0.0001). Furthermore, multivariate Cox regression analysis indicated that GNPNAT1 was an independent prognostic factor for LUAD (OS, TCGA dataset: HR = 1.028, 95% CI: 1.013–1.044, P &lt; 0.001; OS, validation set: HR = 1.313, 95% CI: 1.130–1.526, P &lt; 0.001). GNPNAT1 overexpression was correlated with DNA copy amplification (P &lt; 0.0001), low DNA methylation (R = −0.52, P &lt; 0.0001), and downregulation of hsa-miR-30d-3p (R = −0.17, P &lt; 0.001). GNPNAT1 expression was linked to B cells (R = −0.304, P &lt; 0.0001), CD4+T cells (R = −0.218, P &lt; 0.0001), and dendritic cells (R = −0.137, P = 0.002). Eventually, GSEA showed that the signaling pathways of the cell cycle, ubiquitin-mediated proteolysis, mismatch repair and p53 were enriched in the GNPNAT1 overexpression group.ConclusionGNPNAT1 may be a potential prognostic biomarker and novel target for intervention in LUAD.


2021 ◽  
Vol 19 (1) ◽  
pp. 169-190
Author(s):  
Peiyuan Li ◽  
◽  
Gangjie Qiao ◽  
Jian Lu ◽  
Wenbin Ji ◽  
...  

<abstract> <p>Plasmacytoma variant translocation 1 (PVT1) is involved in multiple signaling pathways and plays an important regulatory role in a variety of malignant tumors. However, its role in the prognosis and immune invasion of bladder urothelial carcinoma (BLCA) remains unclear. This study investigated the expression of PVT1 in tumor tissue and its relationship with immune invasion, and determined its prognostic role in patients with BLCA. Patients were identified from the cancer genome atlas (TCGA). The enrichment pathway and function of PVT1 were explained by gene ontology (GO) term analysis, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA), and the degree of immune cell infiltration was quantified. Kaplan–Meier analysis and Cox regression were used to analyze the correlation between PVT1 and survival rate. PVT1-high BLCA patients had a lower 10-year disease-specific survival (DSS P &lt; 0.05) and overall survival (OS P &lt; 0.05). Multivariate Cox regression analysis showed that PVT1 (high vs. low) (P = 0.004) was an independent prognostic factor. A nomogram was used to predict the effect of PVT1 on the prognosis. PVT1 plays an important role in the progression and prognosis of BLCA and can be used as a medium biomarker to predict survival after cystectomy.</p> </abstract>


2021 ◽  
Author(s):  
Meimei Liu ◽  
Qiong Fang ◽  
Yanping Huang ◽  
Jin Zhou ◽  
Qi Wang

Abstract Background: Extensive research has revealed that costimulatory molecules play central roles in mounting anti-tumor immune responses and long non‐coding RNA (lncRNA) is an important regulatory factor in the development of various cancers. However, their roles in liver hepatocellular carcinoma (HCC) remain unexplored. In this study, we aimed to explore costimulatory molecule-related lncRNAs in HCC and construct a prognostic signature to predict prognosis and improve clinical outcomes with HCC patients.Methods: The data we used for bioinformatics analysis were downloaded from The Cancer Genome Atlas database. Costimulatory molecules were obtained from the known literature. The R software, SPSS and GraphPad Prism were used for mapping and statistical analysis.Results: A five costimulatory molecule-related lncRNAs based risk model was initially constructed through lasso and Cox regression analysis. Moreover, multivariate regression suggested that the risk score was a significant prognostic risk factor in HCC. Samples in high- and low-risk groups exhibited significantly different in gene set enrichment analysis and immune infiltration analysis. Importantly, we found that the AC099850.3 were significantly related to cell proliferation in HCC according to the colony formation and CCK8 assays.Conclusion: In summary, we first identified and validated a novel costimulatory molecule-related survival model and we found that AC099850.3 is closely associated with clinical stage and could remarkably facilitate cell proliferation in HCC, making it potential to be a novel therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document