Experimental Analysis and Control Technology of Deformation and Failure Mechanism of Inclined Coal Seam Roadway using Non-contact DIC Technique: A Case Study

Author(s):  
xianyu xiong ◽  
Jun Dai ◽  
Yibo Ouyang ◽  
Pan Shen

Abstract In order to study the deformation and failure mechanism of surrounding rock of roadway in inclined coal seam, the physical similarity model of right-angle trapezoidal roadway in inclined coal seam, in which the non-contact digital image correlation (DIC) technology and the stress sensor is employed to provide full-field displacement and stress measurements. The deformation control technology of the roadway surrounding rock was proposed and applied to engineering practice. The research results show that the stress and deformation failure of surrounding rock in low sidewall of roadway are greater than those in high sidewall, showing asymmetric characteristics, and the maximum stress concentration coefficients of roadway sidewall, roof and floor are 4.1, 3.4 and 2.8, respectively. A concept of roadway "cyclic failure" mechanism is proposed that is, the cyclic interaction of the two sidewalls, the sharp angles and roof aggravated the failure of roadway, resulting in the overall instability of roadway. The roadway sidewall is serious rib spalling, the roof is asymmetric "Beret" type caving arch failure, and the floor is slightly bulging. On this basis, the principle of roadway deformation control is revealed and asymmetric support design is adopted, and the deformation of roadway is controlled, which support scheme is effective.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianyu Xiong ◽  
Jun Dai ◽  
Yibo Ouyang ◽  
Pan Shen

AbstractThe deformation and failure forms of inclined coal seam roadway under the joint action of dip angle and various geological conditions are complex, and there is a lack of targeted support measures, which brings great problems to the stability control of roadway surrounding rock. In order to safely and economically mine inclined coal seams, taking the engineering geology of Shitanjing No. 2 mining area as the background, and the physical similarity model of right-angle trapezoidal roadway in inclined coal seam, in which the non-contact digital image correlation (DIC) technology and the stress sensor is employed to provide full-field displacement and stress measurements. The deformation control technology of the roadway surrounding rock was proposed, verified by numerical simulation and applied to engineering practice. The research results show that the stress and deformation failure of surrounding rock in low sidewall of roadway are greater than those in high sidewall, showing asymmetric characteristics, and the maximum stress concentration coefficients of roadway sidewall, roof and floor are 4.1, 3.4 and 2.8, respectively. A concept of roadway "cyclic failure" mechanism is proposed that is, the cyclic interaction of the two sidewalls, the sharp angles and roof aggravated the failure of roadway, resulting in the overall instability of roadway. The roadway sidewall is serious rib spalling, the roof is asymmetric "Beret" type caving arch failure, and the floor is slightly bulging. On this basis, the principle of roadway deformation control is revealed and asymmetric support design is adopted, and the deformation of roadway is controlled, which support scheme is effective.


2021 ◽  
Author(s):  
Xianyu Xiong ◽  
Jun Dai ◽  
Xinnian chen ◽  
Yibo Ouyang

Abstract The stressed environment of the inclined coal seam roadway is complex and changeable, and the damage degree of surrounding rock increases, threatening the safe mining of coal mines. To improve the effectiveness of stability control of surrounding rock of this kind of roadway, the deformation and failure law of the inclined coal seam roadway is analyzed based on the complex function theory. It optimizes the solution process and accuracy of the mapping function coefficient and deduces the analytical solution of surrounding rock stress and deformation inclined coal seam roadway. The deformation and failure mechanism of surrounding rock in inclined coal seam roadway is revealed theoretically and verified by numerical simulation and physical simulation test. The results show that the stress and deformation of roadway surrounding rock in inclined coal seam show obvious asymmetric distribution characteristics. The stress and deformation of roadway surrounding rock on the right side are greater than on the left side. The two sides of the roadway, the right side of the roof and the roof angle of the right side, are the key positions of roadway stress concentration and deformation. According to the variation law of stress and deformation distribution of roadway surrounding rock, roadway cyclic deformation and failure theory is put forward. The numerical simulation and physical simulation test show that the deformation and failure law of roadway is consistent with the theoretical analysis results, and the cyclic deformation and failure mechanism of roadway in inclined coal seam is verified.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Qiangling Yao ◽  
Xuehua Li ◽  
Fan Pan ◽  
Teng Wang ◽  
Guang Wang

The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD). We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.


2020 ◽  
Vol 12 (1) ◽  
pp. 390-405
Author(s):  
Bingjie Huo ◽  
Yang Tai ◽  
Xiangbin Meng ◽  
Tiejun Kuang

AbstractIn order to effectively predict and control the rib spalling and roof leakage, it is necessary to reveal the deformation and failure mechanism of the chamber and propose the corresponding surrounding rock control technology. Based on uniaxial compression experiments and numerical simulations, it is concluded that coal body damage is dominated by shear failure during uniaxial compression, which indicates to some extent the main form of damage of the surrounding rock in the chamber. Then the combined finite and discrete element method is used to establish a numerical model to reveal the evolution law of fracture in the surrounding rock. The simulation results show that after the excavation of the chamber, a large amount of shear failure occurred in the ribs and the roof. Then those cracks further developed, expanded, penetrated, and finally connected with the surface of the chamber. Under the effect of the mine pressure, the coal body is separated from the surface of the chamber, leading to the occurrence of rib spalling and roof leakage. So it was given that support method by controlling crack development. The grouting and high-strength anchor bolt and anchor cable are proposed to improve the shear strength of the surrounding rock, which helps to reduce the occurrence of cracks, and inhibit the cracks from interpenetrating. An industrial test was carried out in the chamber of Tashan Coal Mine, which showed good control effect of the surrounding rock in the chamber.


2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


Author(s):  
Samantha Daly ◽  
Kaushik Bhattacharya ◽  
Guruswami Ravichandran

Nickel-Titanium, commonly referred to as Nitinol, is a shape-memory alloy with numerous applications due to its superelastic nature and its ability to revert to a previously defined shape when deformed and then heated past a set transformation temperature. While the crystallography and the overall phenomenology are reasonably well understood, much remains unknown about the deformation and failure mechanisms of these materials. These latter issues are becoming critically important as Nitinol is being increasingly used in medical devices and space applications. The talk will describe the investigation of the deformation and failure of Nitinol using an in-situ optical technique called Digital Image Correlation (DIC). With this technique, full-field quantitative maps of strain localization are obtained for the first time in thin sheets of Nitinol under tension. These experiments provide new information connecting previous observations on the micro- and macro-scale. They show that martensitic transformation initiates before the formation of localized bands, and that the strain inside the bands does not saturate when the bands nucleate. The effect of rolling texture, the validity of the widely used resolved stress transformation criterion, and the role of geometric defects are examined.


2007 ◽  
Vol 334-335 ◽  
pp. 253-256 ◽  
Author(s):  
B. Zhu ◽  
T.X. Yu ◽  
Xiao Ming Tao

Large shear deformation of plain woven composite sheets and corresponding failure mechanism are investigated by bias extension test. Digital image correlation analysis was conducted on a series of photos taken during the test. Four typical phases were identified, and a theoretical model of the large deformation is proposed from energy point of view. Numerical simulations have also been carried out, but it will be reported in a subsequent paper.


2015 ◽  
Vol 782 ◽  
pp. 49-58
Author(s):  
Han Liu ◽  
Peng Wan Chen ◽  
Bao Qiao Guo ◽  
Shao Long Zhang ◽  
Hai Bo Liu ◽  
...  

In this paper, the dynamic deformation and rupture of pre-notched thin metal plates subjected to confined blast loading were investigated. The thin copper plates with cross-shape pre-notch were clamped on the end of a confined cylinder vessel by a cover flange. An explosive charge with a mass of 4g was detonated in the vessel center to generate blast load acting on the metal plates. The images of metal plates were recorded by two high-speed cameras. The displacement and strain fields during the deformation and rupture process were measured by using 3D digital image correlation (3D DIC). The effects of pre-notches on the dynamic deformation and rupture of thin metal plates were analyzed. The microstructure of fracture surface was examined The 3D DIC technique is proven to be an effective method to conduct dynamic full-field deformation measurement.


2013 ◽  
Vol 327 ◽  
pp. 338-341 ◽  
Author(s):  
Jia Fan Zhang ◽  
Wei Gang Shi

Being closer space among steep and close seams, there always is a mutually destructive influence on adjacent seams while mining arbitrary coal seam within the same mining section, so the scientific mining method of steep and close seam is always the difficult problem to mining workers. Urumchi coalfield developed by Shenhua Xijiang corporation is a very few mine in China and even the world, in which entirely existing and exploiting steep and close seam. There are more than 30 layers of steep seams with different thickness and different distance. Aiming to the steep and close seams in Jiangou coalmine of urumchi mine, the combining mining methods with different mining approaches and different advancing distances were numerically simulated using 2-D and 3-D Finite Element Method, the deformation and failure features of surrounding rock were studied, and then the scientific of combining mine in steep and close seam was investigated.


Sign in / Sign up

Export Citation Format

Share Document