scholarly journals Betaine Ameliorates Hyperosmotic Stress-Induced Apoptosis and Autophagy of Porcine Intestinal Epithelium In Vivo and Vitro.

Author(s):  
Shuyi Xu ◽  
Shiyi Lu ◽  
Haichao Wang ◽  
Sisi Li ◽  
Jie Feng

Abstract Background: Hyperosmotic stress resulting from lumen contents is a big challenge to the normal function of the intestinal epithelium. Betaine is a potent organic osmolyte, but it is mostly studied in kidney. The purpose of this study was to gain insight into the osmoprotectant role of betaine in intestinal epithelium of piglets and intestinal porcine epithelial cells (IPEC-J2 cells) under hyperosmotic condition.Results: The result showed that the osmolarity of intestinal chyme was much higher than that of plasma (P < 0.05), indicating a natural hyperosmotic environment of intestinal lumen and subsequently leading to hyperosmotic stress to intestinal epithelium. Meanwhile, hyperosmolarity corresponding to intestinal environment was simulated by 150 mmol/L NaCl in vitro and caused a significant decrease of cell viability (P < 0.05). It was found that betaine could remarkably decrease hyperosmolarity-induced reactive oxygen species (ROS) of intestinal epithelium in vivo and vitro (P < 0.05) with the significant restoration of cell shrinkage (P < 0.05). Furthermore, since hyperosmolarity caused mitochondrial-related apoptosis with the remarkable increase of cleaved Caspase3, cleaved PARP-1, cytoplasm cytochrome c as well as obvious decrease of Bcl-2 in protein level (P < 0.05), betaine prevented mitochondria from membrane collapse and alleviated apoptosis (P < 0.05) in vivo and vitro. Meanwhile, it was also confirmed that betaine reduced hyperosmotic stress-induced apoptotic incidence in IPEC-J2 cells via fluorescence microscope and flow cytometry (P < 0.05). In addition, betaine supplementation significantly suppressed hyperosmotic stress-induced elevated expression of LC3 II and reduced expression of p62 (P < 0.05). indicating that betaine ameliorated autophagy of porcine intestinal epithelium caused by hyperosmolarity in vivo and vitro. Autophagic flux determined by mRFP-GFP-LC3B system in IPEC-J2 cells was in agreement with the result of western blotting as well (P < 0.05). Conclusions: Betaine could alleviate hyperosmotic stress-induced cell shrinkage, ROS accumulation as well as ameliorate subsequently apoptosis and autophagy in small intestinal epithelium of piglets and IPEC-J2 cells.

Author(s):  
Chenglong Xie ◽  
Yifeng Shi ◽  
Zuoxi Chen ◽  
Xin Zhou ◽  
Peng Luo ◽  
...  

Oxidative stress–induced apoptosis and senescence of nucleus pulposus (NP) cells play a crucial role in the progression of intervertebral disc degeneration (IVDD). Accumulation of studies has shown that activated autophagy and enhanced autophagic flux can alleviate IVDD. In this study, we explored the effects of apigenin on IVDD in vitro and in vivo. Apigenin was found to inhibit tert-butyl hydroperoxide (TBHP)–induced apoptosis, senescence, and ECM degradation in NP cells. In addition, apigenin treatment can restore the autophagic flux blockage caused by TBHP. Mechanistically, we found that TBHP may induce autophagosome and lysosome fusion interruption and lysosomal dysfunction, while apigenin alleviates these phenomena by promoting the nuclear translocation of TFEB via the AMPK/mTOR signaling pathway. Furthermore, apigenin also exerts a protective effect against the progression of IVDD in the puncture-induced rat model. Taken together, these findings indicate that apigenin protects NP cells against TBHP-induced apoptosis, senescence, and ECM degradation via restoration of autophagic flux in vitro, and it also ameliorates IVDD progression in rats in vivo, demonstrating its potential for serving as an effective therapeutic agent for IVDD.


2020 ◽  
Vol 10 ◽  
Author(s):  
Ling Wang ◽  
Xiaoke Chai ◽  
Run Wan ◽  
Hong Zhang ◽  
Cong Zhou ◽  
...  

Disulfiram (DSF) is a well-known drug for alcohol abuse. In recent decades, DSF has been demonstrated to exhibit anti-tumor activity; DSF chelated with copper shows enhanced anti-tumor effect. Our goal was to explore the effect of DSF/Cu complex on the growth and metastasis of gastric cancer (GC) in vitro and in vivo. DSF/Cu complex suppressed the proliferation, migration of MKN-45 and BGC-823 GC cells. Furthermore, DSF/Cu treatment reduced the tumor volume in GC mouse models with a tumor suppression rate of 48.24%. Additionally, DSF/Cu induced apoptosis in vitro in MKN-45 and BGC-823 GC cells in a dose- and time-dependent manner as well as in vivo in the xenograft tumor mouse model. Furthermore, DSF/Cu induced autophagy and autophagic flux in MKN-45 and BGC-823 cells, increased the expression of autophagy-related Beclin-1 and LC3 proteins in vivo. Additionally, DSF/Cu suppressed aerobic glycolysis and oxidative phosphorylation by reducing oxygen consumption rate and extracellular acidification rate, respectively, in MKN-45 and BGC-823 cells. Treatment with DSF/Cu induced oxidative stress and DNA damage response by elevating the reactive oxygen species levels; increasing the expression of P53, P21, and γ-H2AX proteins; and inhibiting Wnt/β-catenin signaling in vitro and in vivo. Thus, DSF/Cu suppressed the growth and metastasis of GC cells via modulating the stress response and Wnt/β-catenin signaling. Hence, DSF may be used as a potential therapeutic agent for the treatment of GC.


Parasitology ◽  
1983 ◽  
Vol 87 (1) ◽  
pp. 29-48 ◽  
Author(s):  
R. E. Howells ◽  
A. M. Mendis ◽  
P. G. Bray

SUMMARYThe mode of action of suramin upon Brugia pahangi has been investigated in vivo and in vitro. The drug was without effect on the glycolytic activity of worms in vitro at 2 × 10−4 M. The lack of effect was correlated with the failure of [14C]suramin to penetrate the worms in vitro. Suramin bound to the surface of worms in vitro presumably by virtue of its polyanionic nature. B. pahangi adults ingested [14C]suramin in vivo but no reduction in the rate of lactate production, of glucose utilization or in the rates of uptake of [14C]glucose, [14C]leucine or [14C]adenosine was observed in worms recovered from jirds between weeks 1 and 5 following 4 daily doses of suramin at 50 mg/kg given intraperitoneally. Worm death occurred between weeks 5 and 7 but this delayed drug effect was not the result of a progressive accumulation of suramin in the worms. Ultrastructural changes were observed in the intestinal epithelium of worms from suramin-treated jirds and parallel observations on worms exposed to Trypan blue in vivo suggest that both polyanionic compounds are restricted to the intestinal lumen of the worms. The evidence presented is consistent with the concept that, in B. pahangi, suramin acts at the surface of the intestinal epithelium and not by primarily inhibiting glucose catabolism or inhibiting phagosome and lysosome fusion as previously demonstrated for bloodstream trypanosomes and mammalian macrophages, respectively


2021 ◽  
Vol 12 ◽  
Author(s):  
Qin Ye ◽  
Li Zhou ◽  
Ping Jin ◽  
Lei Li ◽  
Shuwen Zheng ◽  
...  

Non-small cell lung cancer (NSCLC) is one of the most frequent cancers worldwide, yet effective treatment remains a clinical challenge. Guaiazulene (GYZ), a cosmetic color additive, has previously been characterized as a potential antitumor agent due to observed anticancer effects. However, the efficacy of GYZ in the treatment of NSCLC and the involved molecular mechanisms remain largely unknown. Here, we indicated a role for GYZ in the suppression of NSCLC both in vitro and in vivo via triggering reactive oxygen species (ROS)-induced apoptosis. Concomitantly, GYZ induced complete autophagic flux in NSCLC cells via inhibiting the Akt/mTOR signaling pathway, which displayed cytoprotective effect against GYZ-induced growth suppression. Accompanied with autophagy inhibition obviously enhanced the effects of GYZ. Notably, GYZ acts synergistically with paclitaxel in the suppression of NSCLC in vitro. Together, our results for the first time reported that GYZ suppressed the proliferation of NSCLC and suggested a potential strategy for inhibiting NSCLC growth by combinational use of GYZ and autophagy inhibitors.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jinghui Zhang ◽  
Jiajun Fan ◽  
Xian Zeng ◽  
Mingming Nie ◽  
Wei Chen ◽  
...  

AbstractTrastuzumab emtansine (T-DM1), an antibody-drug conjugate consisted of the HER2-targeted monoclonal antibody trastuzumab and the tubulin inhibitor emtansine, has shown potent therapeutic value in HER2-positive breast cancer (BC). However, a clinical trial indicated that T-DM1 exerts a limited effect on HER2-positive gastric cancer (GC), but the underlying mechanism is inconclusive. Our research attempted to reveal the probable mechanism and role of autophagy in T-DM1-treated HER2-positive GC. In this study, our results showed that T-DM1 induced apoptosis and exhibited potent therapeutic efficacy in HER2-positive GC cells. In addition, autophagosomes were observed by transmission electron microscopy. Autophagy was markedly activated and exhibited the three characterized gradations of autophagic flux, consisting of the formation of autophagosomes, the fusion of autophagosomes with lysosomes, and the deterioration of autophagosomes in autolysosomes. More importantly, autophagic inhibition by the suppressors 3-methyladenine (3-MA) and LY294002 significantly potentiated cytotoxicity and apoptosis in HER2-positive GC cells in vitro, while the combined use of LY294002 and T-DM1 elicited potent anti-GC efficacy in vivo. In mechanistic experiments, immunoblot analysis indicated the downregulated levels of Akt, mTOR, and P70S6K and confocal microscopy analysis clearly showed that autophagic inhibition promoted the fusion of T-DM1 molecules with lysosomes in GC cells. In conclusion, our research demonstrated that T-DM1 induced apoptosis as well as cytoprotective autophagy, and autophagic inhibition could potentiate the antitumor effect of T-DM1 on HER2-positive GC. Furthermore, autophagic inhibition might increase the fusion of T-DM1 with lysosomes, which might accelerate the release of the cytotoxic molecule emtansine from the T-DM1 conjugate. These findings highlight a promising therapeutic strategy that combines T-DM1 with an autophagy inhibitor to treat HER-positive GC more efficiently.


2021 ◽  
Vol 15 ◽  
Author(s):  
Muhammad Awais ◽  
Waqar Hussain ◽  
Nouman Rasool ◽  
Yaser Daanial Khan

Background: The uncontrolled growth due to accumulation of genetic and epigenetic changes as a result of loss or reduction in the normal function of Tumor Suppressor Genes (TSGs) and Pro-oncogenes is known as cancer. TSGs control cell division and growth by repairing of DNA mistakes during replication and restrict the unwanted proliferation of a cell or activities, those are the part of tumor production. Objectives: This study aims to propose a novel, accurate, user-friendly model to predict tumor suppressor proteins, which would be freely available to experimental molecular biologists to assist them using in vitro and in vivo studies. Methods: The predictor model has used the input feature vector (IFV) calculated from the physicochemical properties of proteins based on FCNN to compute the accuracy, sensitivity, specificity, and MCC. The proposed model was validated against different exhaustive validation techniques i.e. self-consistency and cross-validation. Results: Using self-consistency, the accuracy is 99%, for cross-validation and independent testing has 99.80% and 100% accuracy respectively. The overall accuracy of the proposed model is 99%, sensitivity value 98% and specificity 99% and F1-score was 0.99. Conclusion: It concludes, the proposed model for prediction of the tumor suppressor proteins can predict the tumor suppressor proteins efficiently, but it still has space for improvements in computational ways as the protein sequences may rapidly increase, day by day.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zhang ◽  
Zhaohui Zhong ◽  
Mei Li ◽  
Jingyi Chen ◽  
Tingru Lin ◽  
...  

AbstractAbnormally expressed and/or phosphorylated Abelson interactor 1 (ABI1) participates in the metastasis and progression of colorectal cancer (CRC). ABI1 presents as at least 12 transcript variants (TSVs) by mRNA alternative splicing, but it is unknown which of them is involved in CRC metastasis and prognosis. Here, we firstly identified ABI1-TSV-11 as a key TSV affecting the metastasis and prognosis of left-sided colorectal cancer (LsCC) and its elevated expression is related to lymph node metastasis and shorter overall survival (OS) in LsCC by analyzing data from The Cancer Genome Atlas and TSVdb. Secondly, ABI1-TSV-11 overexpression promoted LoVo and SW480 cells adhesion and migration in vitro, and accelerated LoVo and SW480 cells lung metastasis in vivo. Finally, mechanism investigations revealed that ABI1-isoform-11 interacted with epidermal growth factor receptor pathway substrate 8 (ESP8) and regulated actin dynamics to affect LoVo and SW480 cells biological behaviors. Taken together, our data demonstrated that ABI1-TSV-11 plays an oncogenic role in LsCC, it is an independent risk factor of prognosis and may be a potential molecular marker and therapeutic target in LsCC.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1202
Author(s):  
Bojjibabu Chidipi ◽  
Syed Islamuddin Shah ◽  
Michelle Reiser ◽  
Manasa Kanithi ◽  
Amanda Garces ◽  
...  

In the heart, mitochondrial homeostasis is critical for sustaining normal function and optimal responses to metabolic and environmental stressors. Mitochondrial fusion and fission are thought to be necessary for maintaining a robust population of mitochondria, and disruptions in mitochondrial fission and/or fusion can lead to cellular dysfunction. The dynamin-related protein (DRP1) is an important mediator of mitochondrial fission. In this study, we investigated the direct effects of the micronutrient retinoid all-trans retinoic acid (ATRA) on the mitochondrial structure in vivo and in vitro using Western blot, confocal, and transmission electron microscopy, as well as mitochondrial network quantification using stochastic modeling. Our results showed that ATRA increases DRP1 protein levels, increases the localization of DRP1 to mitochondria in isolated mitochondrial preparations. Our results also suggested that ATRA remodels the mitochondrial ultrastructure where the mitochondrial area and perimeter were decreased and the circularity was increased. Microscopically, mitochondrial network remodeling is driven by an increased rate of fission over fusion events in ATRA, as suggested by our numerical modeling. In conclusion, ATRA results in a pharmacologically mediated increase in the DRP1 protein. It also results in the modulation of cardiac mitochondria by promoting fission events, altering the mitochondrial network, and modifying the ultrastructure of mitochondria in the heart.


Author(s):  
Zhibin Liao ◽  
Hongwei Zhang ◽  
Chen Su ◽  
Furong Liu ◽  
Yachong Liu ◽  
...  

Abstract Background Aberrant expressions of long noncoding RNAs (lncRNAs) have been demonstrated to be related to the progress of HCC. The mechanisms that SNHG14 has participated in the development of HCC are obscure. Methods Quantitative real-time PCR (qRT-PCR) was used to measure the lncRNA, microRNA and mRNA expression level. Cell migration, invasion and proliferation ability were evaluated by transwell and CCK8 assays. The ceRNA regulatory mechanism of SNHG14 was evaluated by RNA immunoprecipitation (RIP) and dual luciferase reporter assay. Tumorigenesis mouse model was used to explore the roles of miR-876-5p in vivo. The protein levels of SSR2 were measured by western blot assay. Results In this study, we demonstrated that SNHG14 was highly expressed in HCC tissues, meanwhile, the elevated expression of SNHG14 predicted poor prognosis in patients with HCC. SNHG14 promoted proliferation and metastasis of HCC cells. We further revealed that SNHG14 functioned as a competing endogenous RNA (ceRNA) for miR-876-5p and that SSR2 was a downstream target of miR-876-5p in HCC. Transwell, CCK8 and animal experiments exhibited miR-876-5p inhibited HCC progression in vitro and in vivo. By conducting rescue experiments, we found the overexpression of SSR2 or knocking down the level of miR-876-5p could reverse the suppressive roles of SNHG14 depletion in HCC. Conclusion SNHG14 promotes HCC progress by acting as a sponge of miR-876-5p to regulate the expression of SSR2 in HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Friedman ◽  
Carmen Corciulo ◽  
Cristina M. Castro ◽  
Bruce N. Cronstein

AbstractAutophagy, a homeostatic pathway upregulated during cellular stress, is decreased in osteoarthritic chondrocytes and this reduction in autophagy is thought to contribute to the development and progression of osteoarthritis (OA). The adenosine A2A receptor (A2AR) is a potent anti-inflammatory receptor and deficiency of this receptor leads to the development of OA in mice. Moreover, treatment using liposomally conjugated adenosine or a specific A2AR agonist improved joint scores significantly in both rats with post-traumatic OA (PTOA) and mice subjected to a high fat diet obesity induced OA. Importantly, A2AR ligation is beneficial for mitochondrial health and metabolism in vitro in primary and the TC28a2 human cell line. An additional set of metabolic, stress-responsive, and homeostatic mediators include the Forkhead box O transcription factors (FoxOs). Data has shown that mouse FoxO knockouts develop early OA with reduced cartilage autophagy, indicating that FoxO-induced homeostasis is important for articular cartilage. Given the apparent similarities between A2AR and FoxO signaling, we tested the hypothesis that A2AR stimulation improves cartilage function through activation of the FoxO proteins leading to increased autophagy in chondrocytes. We analyzed the signaling pathway in the human TC28a2 cell line and corroborated these findings in vivo in a metabolically relevant obesity-induced OA mouse model. We found that A2AR stimulation increases activation and nuclear localization of FoxO1 and FoxO3, promotes an increase in autophagic flux, improves metabolic function in chondrocytes, and reduces markers of apoptosis in vitro and reduced apoptosis by TUNEL assay in vivo. A2AR ligation additionally enhances in vivo activation of FoxO1 and FoxO3 with evidence of enhanced autophagic flux upon injection of the liposome-associated A2AR agonist in a mouse obesity-induced OA model. These findings offer further evidence that A2AR may be an excellent target for promoting chondrocyte and cartilage homeostasis.


Sign in / Sign up

Export Citation Format

Share Document