scholarly journals Bioinformatic Characteristics and Therapeutic Mechanisms of Calycosin-Anti-Bisphenol A-related Osteosarcoma

2020 ◽  
Author(s):  
Jiachang Tan ◽  
Zhenjie Wu ◽  
Jun Chen ◽  
Hao Mo ◽  
Bin Liu ◽  
...  

Abstract BackgroundEnvironmentally, bisphenol A (BPA) is well-known as a pollutant caused human health risk, such as osteosarcoma (OS). OS, a deadly bone neoplasia, may occur in children and adults. Recently, the anti-OS pharmacotherapy prescribes limitedly. Interestingly, our previous experiments evidence that calycosin exerts the potential anti-OS action in vitro. Thus, in this report, we aimed to characterize and detail the therapeutic targets and mechanisms of calycosin-anti-BPA-related OS by means of network pharmacology and molecular docking analyses. ResultsIn details, the bioinformatic data revealed the mapped, core targets, biological functions, molecular pathways of calycosin to treat BPA-related OS. The computational analysis indicated that molecular docking ability and characteristic of core targets in calycosin to treat BPA-related OS were identified. Meanwhile, all optimal functions and pathways of calycosin-anti-BPA-related OS were revealed, as detailed in pathway networks. ConclusionsTaken together, the network pharmacology and structural biology findings illustrate the core biotargets, pharmacological functions and pathways of calycosin-anti-BPA-related OS. Potentially, these identified core targets may attribute to the scientific development of calycosin against BPA-related OS.

RSC Advances ◽  
2021 ◽  
Vol 11 (19) ◽  
pp. 11610-11626
Author(s):  
Reham S. Ibrahim ◽  
Alaa A. El-Banna

Multi-level mechanism of action of propolis constituents in cancer treatment using an integrated approach of network pharmacology-based analysis, molecular docking and in vitro cytotoxicity testing.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255736
Author(s):  
Kedi Liu ◽  
Xingru Tao ◽  
Jing Su ◽  
Fei Li ◽  
Fei Mu ◽  
...  

Dalbergia Odorifera (DO) has been widely used for the treatment of cardiovascular and cerebrovascular diseasesinclinical. However, the effective substances and possible mechanisms of DO are still unclear. In this study, network pharmacology and molecular docking were used toelucidate the effective substances and active mechanisms of DO in treating ischemic stroke (IS). 544 DO-related targets from 29 bioactive components and 344 IS-related targets were collected, among them, 71 overlapping common targets were got. Enrichment analysis showed that 12 components were the possible bioactive components in DO, which regulating 9 important signaling pathways in 3 biological processes including ‘oxidative stress’ (KEGG:04151, KEGG:04068, KEGG:04915), ‘inflammatory response’(KEGG:04668, KEGG:04064) and ‘vascular endothelial function regulation’(KEGG:04066, KEGG:04370). Among these, 5 bioactive components with degree≥20 among the 12 potential bioactive components were selected to be docked with the top5 core targets using AutodockVina software. According to the results of molecular docking, the binding sites of core target protein AKT1 and MOL002974, MOL002975, and MOL002914 were 9, 8, and 6, respectively, and they contained 2, 1, and 0 threonine residues, respectively. And some binding sites were consistent, which may be the reason for the similarities and differences between the docking results of the 3 core bioactive components. The results of in vitro experiments showed that OGD/R could inhibit cell survival and AKT phosphorylation which were reversed by the 3 core bioactive components. Among them, MOL002974 (butein) had a slightly better effect. Therefore, the protective effect of MOL002974 (butein) against cerebral ischemia was further evaluated in a rat model of middle cerebral artery occlusion (MCAO) by detecting neurological score, cerebral infarction volume and lactate dehydrogenase (LDH) level. The results indicated that MOL002974 (butein) could significantly improve the neurological score of rats, decrease cerebral infarction volume, and inhibit the level of LDH in the cerebral tissue and serum in a dose-dependent manner. In conclusion, network pharmacology and molecular docking predicate the possible effective substances and mechanisms of DO in treating IS. And the results are verified by the in vitro and in vivo experiments. This research reveals the possible effective substances from DO and its active mechanisms for treating IS and provides a new direction for the secondary development of DO for treating IS.


2021 ◽  
Author(s):  
Jie-wen Zhao ◽  
Hai-dong Liu ◽  
Ming-yin Man ◽  
Lv-ya Wang ◽  
Ning Li ◽  
...  

Abstract Background Qishen Yiqi Pills (QSYQP) is a traditional Chinese compound recipe. However, our understanding of its mechanism has been hindered due to the complexity of its components and targets. In this work, the network pharmacology-based approaches were used to explore QSYQP’s pharmacological mechanism on treating cardiovascular diseases (CVD). Results From ETCM and TCM MESH databases we collected QSYQP’s 333 active components and their 674 putative targets. We constructed the sub-network influence by CVD genes and found that 40% QSYQP targets appeared in 20 modules, in which QSYQP’s targets and CVD genes co-existed as hub nodes in the sub-network. Functional enrichment analysis suggested that the 42 key targets were mainly expressed in platelets, blood vessels, cardiomyocytes, and other tissues. The main signaling pathways regulated and controlled by the key targets were inflammation, immunity, blood coagulation and energy metabolism. Network and pathway analysis identified 7 key targets, which were regulated by 7 compounds of QSYQP. 26 of the 42 important targets, including the 7 key targets were verified by literature mining. Twelve pairs of interactions between key targets and QSYQP’s compounds were validated by molecular docking. Further validation experiments suggested that QSYQP suppressed H/R induced apoptosis and cytoskeleton disruption of cardiomyocytes. Western blotting showed that the expression of cardiovascular diseases-related genes including ACTC1, FoxO1 and DIAPH1 was significantly decreased by establishing the hypoxia-reoxygenation model in vitro, while the protein expression of experimental group was significantly increased by adding QSYQP or its ingredients. Conclusion These results indicated the correlation of QSYQP treatment to the therapeutic effects of CVD. At the molecular level, this study revealed the multicomponent and multitargeting mechanisms of QSYQP in the regulation and treatment of cardiovascular diseases, potentially providing a reference for the further utilization of QSYQP.


2021 ◽  
Vol 14 (9) ◽  
pp. 880
Author(s):  
Minjee Kim ◽  
Hanul Choi ◽  
Sumin Kim ◽  
Lin Woo Kang ◽  
Young Bong Kim

The influenza virus is a constantly evolving pathogen that challenges medical and public health systems. Traditionally, curcumin has been used to treat airway inflammatory diseases, such as bronchitis and pneumonia. To elucidate common targets of curcumin and influenza infection and underlying mechanisms, we employed network pharmacology and molecular docking approaches and confirmed results using in vitro experiments. Biological targets of curcumin and influenza were collected, and potential targets were identified by constructing compound–disease target (C-D) and protein–protein interaction (PPI) networks. The ligand–target interaction was determined using the molecular docking method, and in vitro antiviral experiments and target confirmation were conducted to evaluate curcumin’s effects on influenza. Our network and pathway analyses implicated the four targets of AKT1, RELA, MAPK1, and TP53 that could be involved in the inhibitory effects of curcumin on influenza. The binding energy calculations of each ligand–target interaction in the molecular docking showed that curcumin bound to AKT1 with the highest affinity among the four targets. In vitro experiments, in which influenza virus-infected MDCK cells were pre-, co-, or post-treated with curcumin, confirmed curcumin’s prophylactic and therapeutic effects. Influenza virus induction increased the level of mRNA expression of AKT in MDCK cells, and the level was attenuated by curcumin treatment. Collectively, our findings identified potential targets of curcumin against influenza and suggest curcumin as a potential therapy for influenza infection.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Liangjun Yang ◽  
Zhipeng Hu ◽  
Jiajie Zhu ◽  
Qiting Liang ◽  
Hengli Zhou ◽  
...  

This study was aimed at elucidating the potential mechanisms of quercetin in the treatment of gastric cancer (GC). A network pharmacology approach was used to analyze the targets and pathways of quercetin in treating GC. The predicted targets of quercetin against GC were obtained through database mining, and the correlation of these targets with GC was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, the protein-protein interaction (PPI) network was constructed, and overall survival (OS) analysis of hub targets was performed using the Kaplan–Meier Plotter online tool. Finally, the mechanism was further analyzed via molecular docking of quercetin with the hub targets. Thirty-six quercetin-related genes were identified, 15 of which overlapped with GC-related targets. These targets were further mapped to 319 GO biological process terms and 10 remarkable pathways. In the PPI network analysis, six hub targets were identified, including AKT1, EGFR, SRC, IGF1R, PTK2, and KDR. The high expression of these targets was related to poor OS in GC patients. Molecular docking analysis confirmed that quercetin can bind to these hub targets. In conclusion, this study provided a novel approach to reveal the therapeutic mechanisms of quercetin on GC, which will ease the future clinical application of quercetin in the treatment of GC.


Author(s):  
Shuxian Yu ◽  
Wenhui Gao ◽  
Puhua Zeng ◽  
Chenglong Chen ◽  
Zhuo Liu ◽  
...  

Aim and Objective: To investigate the effect of Polyphyllin I (PPI) on HBV-related liver cancer through network pharmacology and in vitro experiments, and to explore its mechanism of action. Materials and Methods: Use bioinformatics software to predict the active ingredient target of PPI and the disease target of liver cancer, and perform active ingredient-disease target analysis. The results of network pharmacology through molecular docking and in vitro experiments can be further verified. The HepG2 receptor cells (HepG2. 2. 15) were transfected with HBV plasmid for observation, with the human liver cancer HepG2 being used as the control. Results: Bioinformatics analysis found that PPI had totally 161 protein targets, and the predicted target and liver cancer targets were combined to obtain 13 intersection targets. The results of molecular docking demonstrated that PPI had good affinity with STAT3, PTP1B, IL2, and BCL2L1. The results of the in vitro experiments indicated that the PPI inhibited cell proliferation and metastasis in a concentration-dependent manner (P<0.01). Compared with the vehicle group, the PPI group of 1.5, 3, and 6 μmol/L can promote the apoptosis of liver cancer to different degrees (P<0.01). Conclusion: The present study revealed the mechanism of PPI against liver cancer through network pharmacology and in vitro experiments. Its mechanism of action is related to the inhibition of PPI on the proliferation of HBV-related liver cancer through promoting the apoptosis of liver cancer cells. Additionally, in vitro experiments have also verified that PPI can promote the apoptosis of HepG2 and HepG2.2.15 cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Huang ◽  
Jinkun Lin ◽  
Surong Huang ◽  
Jianzhen Shen

Background: It has been verified that deficiency of Qi, a fundamental substance supporting daily activities according to the Traditional Chinese Medicine theory, is an important symptom of cancer. Qi-invigorating herbs can inhibit cancer development through promoting apoptosis and improving cancer microenvironment. In this study, we explored the potential mechanisms of Qi-invigorating herbs in diffuse large B cell lymphoma (DLBCL) through network pharmacology and in vitro experiment.Methods: Active ingredients of Qi-invigorating herbs were predicted from the Traditional Chinese Medicine Systems Pharmacology Database. Potential targets were obtained via the SwissTargetPrediction and STITCH databases. Target genes of DLBCL were obtained through the PubMed, the gene-disease associations and the Malacards databases. Overlapping genes between DLBCL and each Qi-invigorating herb were collected. Hub genes were subsequently screened via Cytoscape. The Gene Ontology and pathway enrichment analyses were performed using the DAVID database. Molecular docking was performed among active ingredients and hub genes. Hub genes linked with survival and tumor microenvironment were analyzed through the GEPIA 2.0 and TIMER 2.0 databases, respectively. Additionally, in vitro experiment was performed to verify the roles of common hub genes.Results: Through data mining, 14, 4, 22, 22, 35, 2, 36 genes were filtered as targets of Ginseng Radix et Rhizoma, Panacis Quinquefolii Radix, Codonopsis Radix, Pseudostellariae Radix, Astragali Radix, Dioscoreae Rhizoma, Glycyrrhizae Radix et Rhizoma for DLBCL treatment, respectively. Then besides Panacis Quinquefolii Radix and Dioscoreae Rhizoma, 1,14, 10, 14,13 hub genes were selected, respectively. Molecular docking studies indicated that active ingredients could stably bind to the pockets of hub proteins. CASP3, CDK1, AKT1 and MAPK3 were predicted as common hub genes. However, through experimental verification, only CASP3 was considered as the common target of Qi-invigorating herbs on DLBCL apoptosis. Furthermore, the TIMER2.0 database showed that Qi-invigorating herbs might act on DLBCL microenvironment through their target genes. Tumor-associated neutrophils may be main target cells of DLBCL treated by Qi-invigorating herbs.Conclusion: Our results support the effects of Qi-invigorating herbs on DLBCL. Hub genes and immune infiltrating cells provided the molecular basis for each Qi-invigorating herb acting on DLBCL.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Renxuan Huang ◽  
Rui Dong ◽  
Nan Wang ◽  
Beiwu Lan ◽  
Hongyang Zhao ◽  
...  

Luteolin, a natural flavone compound, exists in a variety of fruits and vegetables, and its anticancer effect has been shown in many studies. However, its use in glioma treatment is hampered due to the fact that the underlying mechanism of action has not been fully explored. Therefore, we elucidated the potential antiglioma targets and pathways of luteolin systematically with the help of network pharmacology and molecular docking technology. The druggability of luteolin, including absorption, excretion, distribution, and metabolism, was assessed via the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The potential targets of luteolin and glioma were extracted from public databases, and the intersecting targets between luteolin and glioma were integrated and visualized by a Venn diagram. In addition, GO and KEGG pathway analysis was engaged in Metascape. The network of the luteolin-target-pathway was visualized by Cytoscape. Ultimately, the interactions between luteolin and predicted key targets were confirmed by Discovery studio software. According to the ADME results, luteolin shows great potential for development into a drug. 4860 glioma-associated targets and 280 targets of luteolin were identified, of which 205 were intersection targets. 6 core targets of luteolin against glioma, including AKT1, JUN, ALB, MAPK3, MAPK1, and TNF, were identified via PPI network analysis of which AKT1, JUN, ALB, MAPK1, and TNF harbor diagnostic value. The biological processes of luteolin are mainly involved in the response to inorganic substances, response to oxidative stress, and apoptotic signaling pathway. The essential pathways of luteolin against glioma involve pathways in cancer, the PI3K-Akt signaling pathway, the TNF signaling pathway, and more. Meanwhile, luteolin’s interaction with six core targets was verified by molecular docking simulation and its antiglioma effect was verified by in vitro experiments. This study suggests that luteolin has a promising potential for development into a drug and, moreover, it displays preventive effects against glioma by targeting various genes and pathways.


Sign in / Sign up

Export Citation Format

Share Document