Programmably switching the NIR upconversion for orthogonal activation of photoacoustic imaging and on-demand phototherapy

Author(s):  
Yang Yang ◽  
Jinshu Huang ◽  
Wei Wei ◽  
Qin Zeng ◽  
Xipeng Li ◽  
...  

Abstract Upconversion nanoparticles (UCNPs) based phototheranostics offer significant expectations for the personalized cancer medicine via integrating both modalities of imaging diagnostics and phototherapeutics. However, programmably controlling the photoactivation of imaging and therapy towards the accurate diagnosis with minimum side effects for on-demand therapy has remained challenging due to the lack of ideal switchable UCNPs agents. Herein, we demonstrate a facile strategy to simply switch the near infrared emission at 800 nm from rationally designed UCNPs by modulating the irradiation laser into pulse output. Through synthesis of the theranostic UCNPs-DI agent combining with a photosensitizer and a photoabsorbing agent assembled on the UCNPs, the orthogonal activation of in vivo photoacoustic imaging and photodynamic therapy was further achieved by simply altering the excitation modes from pulse to continuous-wave output upon a single 980-nm laser. Importantly, no obvious harmful effects during photoexcitation caused by reactive oxygen species (ROS) photooxidation and photohyperthermia were generated under imaging modality, which facilitates the long-term and real-time imaging-guidance for the subsequent phototherapy. This work provides a new facile approach for the orthogonal activation of imaging diagnostics and photodynamic therapeutics towards the target cancers.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Liping Huang ◽  
Yiyi Zhang ◽  
Yanan Li ◽  
Fanling Meng ◽  
Hongyu Li ◽  
...  

AbstractThe highly immunosuppressive microenvironment after surgery has a crucial impact on the recurrence and metastasis in breast cancer patients. Programmable delivery of immunotherapy-involving combinations through a single drug delivery system is highly promising, yet greatly challenging, to reverse postoperative immunosuppression. Here, an injectable hierarchical gel matrix, composed of dual lipid gel (DLG) layers with different soybean phosphatidylcholine/glycerol dioleate mass ratios, was developed to achieve the time-programmed sequential delivery of combined cancer immunotherapy. The outer layer of the DLG matrix was thermally responsive and loaded with sorafenib-adsorbed graphene oxide (GO) nanoparticles. GO under manually controlled near-infrared irradiation generated mild heat and provoked the release of sorafenib first to reeducate tumor-associated macrophages (TAMs) and promote an immunogenic tumor microenvironment. The inner layer, loaded with anti-CD47 antibody (aCD47), could maintain the gel state for a much longer time, enabling the sustained release of aCD47 afterward to block the CD47-signal regulatory protein α (SIRPα) pathway for a long-term antitumor effect. In vivo studies on 4T1 tumor-bearing mouse model demonstrated that the DLG-based strategy efficiently prevented tumor recurrence and metastasis by locally reversing the immunosuppression and synergistically blocking the CD47-dependent immune escape, thereby boosting the systemic immune responses.


2016 ◽  
Vol 4 (48) ◽  
pp. 7845-7851 ◽  
Author(s):  
Junpeng Shi ◽  
Meng Sun ◽  
Xia Sun ◽  
Hongwu Zhang

Near-infrared persistent luminescence hollow mesoporous nanospheres have been synthesized via a template method. These nanospheres can be used as large capacity drug carriers and realize super long-term and high sensitivity tracking of drug delivery in deep tissue.


Nano Letters ◽  
2021 ◽  
Author(s):  
Alexander M. Saeboe ◽  
Alexey Yu. Nikiforov ◽  
Reyhaneh Toufanian ◽  
Joshua C. Kays ◽  
Margaret Chern ◽  
...  

2016 ◽  
Vol 52 (47) ◽  
pp. 7466-7469 ◽  
Author(s):  
Yi Liu ◽  
Qianqian Su ◽  
Xianmei Zou ◽  
Min Chen ◽  
Wei Feng ◽  
...  

A molecular upconversion probe with intense near-infrared emission has tremendous potential in bioimaging.


Author(s):  
Chuangjia Huang ◽  
Xiaoling Guan ◽  
Hui Lin ◽  
Lu Liang ◽  
Yingling Miao ◽  
...  

Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye approved by the Food and Drug Administration (FDA), has been extensively used as a photoacoustic (PA) probe for PA imaging. However, its practical application is limited by poor photostability in water, rapid body clearance, and non-specificity. Herein, we fabricated a novel biomimetic nanoprobe by coating ICG-loaded mesoporous silica nanoparticles with the cancer cell membrane (namely, CMI) for PA imaging. This probe exhibited good dispersion, large loading efficiency, good biocompatibility, and homologous targeting ability to Hela cells in vitro. Furthermore, the in vivo and ex vivo PA imaging on Hela tumor-bearing nude mice demonstrated that CMI could accumulate in tumor tissue and display a superior PA imaging efficacy compared with free ICG. All these results demonstrated that CMI might be a promising contrast agent for PA imaging of cervical carcinoma.


2019 ◽  
Vol 10 (9) ◽  
pp. 2785-2790 ◽  
Author(s):  
Rongchen Wang ◽  
Kaikai Dong ◽  
Ge Xu ◽  
Ben Shi ◽  
Tianli Zhu ◽  
...  

A theranostic platform enables the selective visualization of H2S-rich cancers and imaging-directed on-demand photodynamic therapy of the detected cancers while leaving normal tissues untouched.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eduardo Romero ◽  
Alfonso Martínez ◽  
Marta Oteo ◽  
Marta Ibañez ◽  
Mirentxu Santos ◽  
...  

AbstractRadionuclide generator systems can routinely provide radionuclides on demand such as 68Ga produced by a 68Ge/68Ga generator without the availability of an on-site accelerator or a research reactor. Thus, in this work nano-SnO2 was used to develop a new 68Ge/68Ga generator which was evaluated over a period of 17 months and 305 elution cycles. The elution yield was 91.1 ± 1.8% in the first 7 mL (1 M HCl as eluent) when the generator was new and then it decreased with time and use to 73.8 ± 1.9%. Around 80% of the elutable 68Ga activity was obtained in 1 mL and the 68Ge content in the eluate did not exceed 1 × 10–4% over the investigation period when it was eluted regularly. The described generator provided adequate results for radiolabelling of DOTA-TOC with direct use of eluate. In addition, [68Ga]Ga-DOTA-TOC was tested satisfactorily for in vivo tumor detection by microPET/CT imaging in a lung cancer mouse model.


Nanoscale ◽  
2018 ◽  
Vol 10 (21) ◽  
pp. 10025-10032 ◽  
Author(s):  
Wen Liu ◽  
Yalun Wang ◽  
Xiao Han ◽  
Ping Lu ◽  
Liang Zhu ◽  
...  

Near-infrared (NIR) fluorescence is very important for high-contrast biological imaging of high-scattering tissues such as brain tissue.


2020 ◽  
Vol 10 (3) ◽  
pp. 1024 ◽  
Author(s):  
Eftekhar Rajab Bolookat ◽  
Laurie J. Rich ◽  
Gyorgy Paragh ◽  
Oscar R. Colegio ◽  
Anurag K. Singh ◽  
...  

Photoacoustic imaging (PAI) is a novel hybrid imaging modality that provides excellent optical contrast with the spatial resolution of ultrasound in vivo. The method is widely being investigated in the clinical setting for diagnostic applications in dermatology. In this report, we illustrate the utility of PAI as a non-invasive tool for imaging tattoos. Ten different samples of commercially available tattoo inks were examined for their optoacoustic properties in vitro. In vivo PAI of an intradermal tattoo on the wrist was performed in a healthy human volunteer. Black/gray, green, violet, and blue colored pigments provided higher levels of PA signal compared to white, orange, red, and yellow pigments in vitro. PAI provided excellent contrast and enabled accurate delineation of the extent of the tattoo in the dermis. Our results reveal the photoacoustic properties of tattoo inks and demonstrate the potential clinical utility of PAI for intradermal imaging of tattoos. PAI may be useful as a clinical adjunct for objective preoperative evaluation of tattoos and potentially to guide/monitor laser-based tattoo removal procedures.


Sign in / Sign up

Export Citation Format

Share Document