scholarly journals PM2.5 Induced Airway Remodeling via Wnt5a/β-catenin Pathway in Chronic Obstructive Pulmonary Diseases

Author(s):  
Weifeng Zou ◽  
Xiaoqian Wang ◽  
Ruiting Sun ◽  
Jinxing Hu ◽  
Dong Ye ◽  
...  

Abstract Background: PM2.5-associated airway remodeling has recently been recognized as a central feature of COPD. The activation of Wnt/β-catenin pathway is closely related to the occurrence of airway remodeling. Accordingly, the goal of this study was to determine whether Wnt5a/β-Catenin is involved in PM2.5-induced smooth muscle proliferation in vivo and vitro, which promoted the development of airway remodeling in COPD.Methods: The effect of Wnt5a on β-Catenin-mediated airway remodeling was assessed by using an in vivo model of PM2.5-induced COPD and PM2.5-exposed human bronchial smooth muscle cell (HBSMC) in vitro. Small animal spirometry to measure lung function in mice. H&E staining and immunohistological inspection of emphysema and airway remodeling indexes. qPCR to detect Wnt5a, β-Catenin, TGF-β1, CyclinD1 and c-myc mRNA expression. CCK8 assay for cellular activity. Western blotting for PCNA, α-SMA, Wnt5a, β-Catenin, PDGFRβ and TenascinC protein expression. Detection of β-Catenin expression by cellular immunofluorescence.Results: The exposure to PM2.5 led to emphysema, airway wall thickening, increased smooth muscle layer thickness, decreased lung function and induced the expression of Wnt5a, β-Catenin, PDGFRβ and Tenascin C protein expression in lung tissue of mice. BOX5 alleviated PM2.5-induced these outcomes in mice. Moreover, PM2.5 induced the mRNA expression of Wnt5a, β-Catenin, TGF-β1, CyclinD1 and c-myc in HBSMC. BOX5 also inhibited PM2.5-induced the increase of PCNA, α-SMA, Wnt5a, β-Catenin, PDGFRβ and Tenascin C protein expression in HBSMC. Conclusions: Our findings suggest that PM2.5 exposure induce HBSMC proliferation, contributing to airway remodeling via Wnt5a/β-Catenin signaling pathway in vivo and in vitro, which could be a target of treatment of COPD.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Qi Shang ◽  
Xiang Yu ◽  
Hui Ren ◽  
Gengyang Shen ◽  
Wenhua Zhao ◽  
...  

Extracts from plastrum testudinis (PTE) are active compounds that have been used to treat bone diseases in traditional Chinese medicine for thousands of years. In previous studies, we demonstrated their effects on glucocorticoid-induced osteoporosis both in vivo and in vitro. However, the mechanisms by which PTE regulates the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) in vitro remain poorly understood. In this study, rBMSCs were treated with medium (CON), PTE, osteogenic induction (OI), and a combination of PTE and OI (PTE+OI) over a 21-day period. We found that PTE significantly promoted rBMSCs osteogenic differentiation and mineralisation after 21 days of culturing. Moreover, PTE+OI further enhanced the differentiation and mineralisation process. PTE upregulated STE20, IGF1R, and p38 MAPK mRNA expression and downregulated TRAF6 mRNA expression. The extracts inhibited TRAF6 protein expression and promoted STE20, IGF1R, and phosphorylated p38 MAPK protein expression. Our results imply that PTE promotes the proliferation and osteogenic differentiation of rBMSCs by upregulating p38 MAPK, STE20, and IGF1R and downregulating TRAF6 expression, which may provide experimental evidence of the potential of PTE in the treatment of osteoporosis.


2021 ◽  
Author(s):  
Duojun Qiu ◽  
Shan Song ◽  
Yawei Bian ◽  
Chen Yuan ◽  
wei zhang ◽  
...  

Abstract Background: Diabetic nephropathy is one of the main complications of diabetes, inflammation and fibrosis play an important role in its progress. NAD (P) H: quinone oxidoreductase 1 (NQO1) protects cells from oxidative stress and toxic quinone damage. In present study, we aimed to investigate the protective effects and underlying mechanisms of NQO1 on diabetes-induced renal inflammation and fibrosis. Methods: In vivo, adeno-associated virus serotype 9 was used to infect the kidneys of type 2 diabetes model db/db mice to overexpress NQO1. In vitro, human renal tubular epithelial cells (HK-2) transfected with NQO1 pcDNA were cultured in high glucose. The gene and protein expression were assessed by quantitative real-time PCR, western blot, immunofluorescence, and immunohistochemical staining. Mitochondrial reactive oxygen species was detected by MitoSox red. Result: Our study revealed that the expression of NQO1 was markedly down-regulated, Toll-like receptor 4 (TLR4) and TGF-β1 upregulated in vivo and in vitro under diabetic conditions. Overexpression of NQO1 suppressed pro-inflammatory cytokines secretion (IL-6, TNF-α, MCP-1), extracellular matrix (ECM) accumulation (collagen Ⅳ, Fibronectin) and epithelial-mesenchymal transition (EMT) (α-SMA, E-cadherin) in db/db mice kidney and high glucose cultured human renal tubular cells (HK-2). Furthermore, NQO1 overexpression ameliorated high glucose-induced TLR4/NF-κB and TGF-β/Smad pathway activation. Mechanistic studies demonstrated that TLR4 inhibitor (TAK-242) suppressed TLR4/NF-κB signaling pathway, pro-inflammatory cytokines secretion, EMT and ECM-related protein expression in HG-exposed HK-2 cells. In addition, we found that antioxidants NAC and tempol increased the expression of NQO1, decreased the expression of TLR4, TGF-β1, Nox1, Nox4 and ROS production in HK-2 cells cultured with high glucose. Conclusions: These above data suggest that NQO1 alleviates diabetes-induced renal inflammation and fibrosis by regulating TLR4/NF-κB and TGF-β/Smad signaling pathways.


2001 ◽  
Vol 26 (3) ◽  
pp. 175-184 ◽  
Author(s):  
D Marcantonio ◽  
LE Chalifour ◽  
MA Alaoui-Jamali And H T Huynh ◽  
MA Alaoui-Jamali ◽  
MA Alaoui-Jamali ◽  
...  

Steroid-sensitive gene-1 (SSG1) is a novel gene we cloned, found regulated by 17beta-estradiol in the rat uterus and mammary gland, and over-expressed in 7,12-dimethylbenz(a)anthracene-induced rat mammary tumors. We show here that SSG1 mRNA and protein expression are regulated by androgens in the rat ventral prostate. Increases in SSG1 mRNA levels were detected by Northern blotting after 24 h and reached a 27-fold peak 96 h following castration, relative to SSG1 mRNA expression in sham-operated rats. Dihydrotestosterone or testosterone supplementation of castrated rats prevented this rise in SSG1 mRNA. In contrast with SSG1 mRNA expression, SSG1 protein was decreased 16-fold 2 weeks following castration but was at control levels in the prostates of castrated rats receiving dihydrotestosterone or testosterone. Although SSG1 is regulated by androgens in vivo, treatment of LnCap cells with dihydrotestosterone, cyproterone acetate or flutamide did not result in the regulation of SSG1 protein levels in vitro. Immunofluorescence studies show that SSG1 is mainly expressed in prostatic smooth muscle cells. These results indicate that SSG1 is an androgen-regulated gene that is expressed in the smooth muscle component of the rat ventral prostate in vivo.


1998 ◽  
Vol 31 ◽  
pp. 104
Author(s):  
W.M.M. van de Greef ◽  
G. Castoldi ◽  
C.R.T. di Gioia ◽  
F. Clementi ◽  
M.-R. Camellitti ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shintaro Mukohara ◽  
Yutaka Mifune ◽  
Atsuyuki Inui ◽  
Hanako Nishimoto ◽  
Takashi Kurosawa ◽  
...  

Abstract Background Dehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes. This study aimed to investigate the in vitro and in vivo protective effects of DHEA against high glucose-induced oxidative stress in tenocytes and tendons. Methods Tenocytes from normal Sprague-Dawley rats were cultured in low-glucose (LG) or high-glucose (HG) medium with or without DHEA. The experimental groups were: control group (LG without DHEA), LG with DHEA, HG without DHEA, and HG with DHEA. Reactive oxygen species (ROS) production, apoptosis, and messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, and interleukin-6 (IL-6) were determined. Further, diabetic rats were divided into a control group and a DHEA-injected group (DHEA group). NOX1 and NOX4 protein expression and mRNA expression of NOX1, NOX4, IL-6, matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined. Results In rat tenocytes, DHEA decreased the expression of NOX1 and IL-6, ROS accumulation, and apoptotic cells. In the diabetic rat Achilles tendon, NOX1 protein expression and mRNA expression of NOX1, IL-6, MMP-2, TIMP-2, and type III collagen were significantly lower while type I collagen expression was significantly higher in the DHEA group than in the control group. Conclusions DHEA showed antioxidant and anti-inflammatory effects both in vitro and in vivo. Moreover, DHEA improved tendon matrix synthesis and turnover, which are affected by hyperglycemic conditions. DHEA is a potential preventive drug for diabetic tendinopathy.


2021 ◽  
Author(s):  
Shintaro Mukohara ◽  
Yutaka Mifune ◽  
Atsuyuki Inui ◽  
Hanako Nishimoto ◽  
Takashi Kurosawa ◽  
...  

Abstract BackgroundDehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes. The aim of this study was to investigate the in vitro and in vivo protective effects of DHEA against high glucose-induced oxidative stress in tenocytes and tendons. Methods In an in vitro study, tenocytes from normal Sprague-Dawley rats were cultured in low-glucose (LG) or high-glucose (HG) medium with or without DHEA. The experimental groups were: control group (LG without DHEA), LG with DHEA, HG without DHEA, and HG with DHEA. Reactive oxygen species (ROS) production, apoptosis, and messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, and interleukin-6 (IL-6) were determined. In the in vivo study, diabetic rats were divided into a control group and a DHEA-injected group (DHEA group). NOX1 and NOX4 protein expression and mRNA expression of NOX1, NOX4, IL-6, matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined. Results In rat tenocytes, DHEA decreased the expression of NOX1 and IL-6, ROS accumulation, and apoptotic cells. In the diabetic rat Achilles tendon, NOX1 protein expression and mRNA expression of NOX1, IL-6, MMP-2, TIMP-2, and type III collagen were significantly lower, while type I collagen expression was significantly lower in the DHEA group.Conclusions DHEA showed antioxidant and anti-inflammatory effects both in vitro and in vivo. Moreover, DHEA improved tendon matrix synthesis and turnover which are affected by hyperglycemic conditions. DHEA could be a preventive drug for the diabetic tendinopathy.


2014 ◽  
Vol 306 (1) ◽  
pp. L101-L109 ◽  
Author(s):  
Markus Fehrholz ◽  
Matthias Hütten ◽  
Boris W. Kramer ◽  
Christian P. Speer ◽  
Steffen Kunzmann

Factors positively influencing surfactant homeostasis in general and surfactant protein B (SP-B) expression in particular are considered of clinical importance regarding an improvement of lung function in preterm infants. The objective of this study was to identify effects of physiological levels of caffeine on glucocorticoid-mediated SP-B expression in vitro and in vivo. Levels of SP-B and pepsinogen C were quantified by quantitative real-time RT-PCR or immunoblotting in NCI-H441 cells daily exposed to caffeine and/or dexamethasone (DEX). In vivo, SP-B expression was analyzed in bronchoalveolar lavage (BAL) of preterm sheep exposed to antenatal DEX and/or postnatal caffeine. If DEX and caffeine were continuously present, SP-B mRNA and protein levels were increased for up to 6 days after induction ( P < 0.05). Additionally, caffeine enhanced SP-B mRNA expression in DEX-pretreated cells ( P < 0.05). Moreover, caffeine amplified DEX-induced pepsinogen C mRNA expression ( P < 0.05). After short-term treatment with caffeine in vivo, only slightly higher SP-B levels could be detected in BAL of preterm sheep following antenatal DEX, combined with an increase of arterial oxygen partial pressure ( P < 0.01). Our data demonstrated that the continuous presence of caffeine in vitro is able to amplify DEX-mediated SP-B expression. In contrast, short-term improvement of lung function in vivo is likely to be independent of altered SP-B transcription and translation. An impact of caffeine on release of surfactant reservoirs from lamellar bodies could, however, quickly affect SP-B content in BAL, which has to be further investigated. Our findings indicate that caffeine is able to amplify main effects of glucocorticoids that result from changes in surfactant production, maturation, and release.


2012 ◽  
Vol 32 (4) ◽  
pp. 462-472 ◽  
Author(s):  
Kazuo Serie ◽  
Noboru Fukuda ◽  
Shigeki Nakai ◽  
Hiroyuki Matsuda ◽  
Takashi Maruyama ◽  
...  

ObjectiveEncapsulating peritoneal sclerosis (EPS) is a devastating fibrotic complication in patients treated with peritoneal dialysis (PD). Transforming growth factor β1 (TGF-β1) is a pivotal factor in the induction of EPS.MethodsTo develop pyrrole-imidazole (PI) polyamide, a novel gene silencer, targeted to the TGF-β1 promoter (Polyamide) for EPS, we examined the effects of Polyamide on messenger RNA (mRNA) expression of TGF-β 1, vascular endothelial growth factor (VEGF), and extracellular matrix (ECM) in mesothelial cells in vitro, and on the thickness of injured peritoneum evaluated by histology and high- resolution regional elasticity mapping in rats in vivo.ResultsPolyamide significantly lowered mRNA expression of TGF-β 1 and ECM in vitro. Polyamide labeled with fluorescein isothiocyanate was taken up into the injured peritoneum and was strongly localized in the nuclei of most cells. Polyamide 1 mg was injected intraperitoneally 1 or 3 times in rats receiving a daily intraperitoneal injection of chlorhexidine gluconate and ethanol (CHX) for 14 days. Polyamide significantly suppressed peritoneal thickening and the abundance of TGF-β 1 and fibronectin mRNA, but did not affect expression of VEGF mRNA in the injured peritoneum. Elasticity distribution mapping showed that average elasticity was significantly lower in Polyamide-treated rats than in rats treated solely with CHX.ConclusionsPolyamide suppressed the stiffness, ECM formation, and thickening of the injured peritoneum that occurs during EPS pathogenesis. These data suggest that PI polyamide targeted to the TGF-β 1 promoter will be a specific and feasible therapeutic strategy for patients with EPS.


Sign in / Sign up

Export Citation Format

Share Document