scholarly journals Melatonin Protects TEGDMA induced Pre-odontoblasts Mitochondrial Apoptosis via JNK/MAPK Signaling Pathway

Author(s):  
Qihao Yu ◽  
Yi Liu ◽  
Konghuai Wang ◽  
Xunben Weng ◽  
Shengbin Huang ◽  
...  

Abstract Background: Resin monomer induced dental pulp injury presents a mitochondrial dysfunction related pathology. Melatonin has been regarded as a strong mitochondrial protective bioactive compound from pineal gland. However, it remains unknown whether melatonin can prevent dental pulp from resin monomer induced injury. The aim of the study is to investigate the effects of melatonin on TEGDMA, a major component in dental resin, induced mouse pre-odontoblast cell lines (mDPC6T) mitochondrial apoptosis and to verify whether JNK/MAPK signaling pathway mediate the protective effect of melatonin. Methods: We adopted a well-established TEGDMA-induced mDPC6T apoptosis model to investigate the preventive effect of melatonin by detecting cell viability, apoptosis rate, expression of apoptosis related protein, mitochondrial ROS (mtROS) production, mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) level. Inhibitors of MAPKs signaling were used to explore which pathway was participated in TEGDMA induced apoptosis. Finally, we verified the role of JNK/MAPK pathway during the protective effects of melatonin above by the agonist and antagonists of JNK.Results: Melatonin attenuated TEGDMA induced mDPC6T apoptosis via reducing mtROS production, rescuing MMP and ATP level. Meanwhile, the mitochondrial dysfunction and apoptosis was alleviated by the JNK/MAPK inhibitor SP600125 but not the other MAPKs signaling inhibitors. Furthermore, melatonin down-regulated the expression of phosphorylated-JNK, and eliminated the active effects of Anisomycin on JNK/MAPK pathway, which mimicked the effects of the SP600125.Conclusion: Our findings demonstrated that melatonin protected mDPC6T against TEGDMA induced apoptosis via JNK/MAPK signaling and maintenance of mitochondrial function, which presented a novel therapeutic strategy for prevention against resin monomer-induced dental pulp injury.

Author(s):  
Yu-Yan Zhao ◽  
Lin-Hui Chen ◽  
Liang Huang ◽  
Yong-Zhen Li ◽  
Chen Yang ◽  
...  

Cardiovascular and related metabolic diseases are significant global health challenges. Glucagon-like peptide 1 (GLP-1) is a brain-gut peptide secreted by ileal endocrine that is now an established drug target in type 2 diabetes (T2DM). GLP-1 targeting agents have been shown not only to treat T2DM, but also to exert cardiovascular protective effects through regulating multiple signaling pathways. The mitogen-activated protein kinase (MAPK) pathway, a common signal transduction pathway for transmitting extracellular signals to downstream effector molecules, is involved in regulating diverse cell physiological processes, including cell proliferation, differentiation, stress, inflammation, functional synchronization, transformation and apoptosis. The purpose of this review is to highlight the relationship between GLP-1 and cardiovascular disease (CVD), and discuss how GLP-1 exerts cardiovascular protective effects through MAPK signaling pathway. This review also discusses the future challenges in fully characterizing and evaluating the CVD protective effects of GLP-1 receptor agonists (GLP-1RA) at the cellular and molecular level. A better understanding of MAPK signaling pathway that are disregulated in CVD may aid in the design and development of promising GLP-1RA.


2016 ◽  
Vol 39 (6) ◽  
pp. 2216-2226 ◽  
Author(s):  
Pei Li ◽  
Yuan Xu ◽  
Yibo Gan ◽  
Liyuan Wang ◽  
Bin Ouyang ◽  
...  

Background/Aims: Matrix homeostasis within the disc nucleus pulposus (NP) tissue is important for disc function. Increasing evidence indicates that sex hormone can influence the severity of disc degeneration. This study was aimed to study the role of 17β-estradiol (E2) in NP matrix synthesis and its underlying mechanism. Methods: Rat NP cells were cultured with (10-5, 10-7 and 10-9 M) or without (control) E2 for48 hours. The estrogen receptor (ER)-β antagonist PHTPP and ERβ agonist ERB 041 were used to investigate the role mediated by ERβ. The p38 MAPK inhibitor SB203580 was used to investigate the role of p38 MAPK signaling pathway. Gene and protein expression of SOX9, aggrecan and collagen II, glycosaminoglycan (GAG) content, and immunostaining assay for aggrecan and collagen II were analyzed to evaluate matrix production in rat NP cells. Results: E2 enhanced NP matrix synthesis in a concentration-dependent manner regarding gene and proetin expression of SOX9, aggrecan and collagen II, protein deposition of aggrecan and collagen II, and GAG content. Moreover, activation of p38 MAPK signaling pathway was increased with elevating E2 concentration. Further analysis indicated that ERB 041 and PHTPP could respectively enhance and suppress effects of E2 on matrix synthesis in NP cells, as well as activation of p38 MAPK pathway. Additionally, inhibition of p38 MAPK signaling pathway significantly abolished the effects of E2 on matrix synthesis. Conclusion: E2 can enhance matrix synthesis of NP cells and the ERβ/p38 MAPK pathway is involved in this regulatory process.


2020 ◽  
Vol 11 (9) ◽  
pp. 8133-8140
Author(s):  
Yalei Cui ◽  
Boshuai Liu ◽  
Xiao Sun ◽  
Zidan Li ◽  
Yanyan Chen ◽  
...  

Alfalfa saponins defend against oxidative stress by enhancing the antioxidant system and further inhibit cell apoptosis by activating the MAPK signaling pathway.


Life Sciences ◽  
2020 ◽  
Vol 253 ◽  
pp. 117730
Author(s):  
Donghua Liu ◽  
Wang Tang ◽  
Hongyi Zhang ◽  
He Huang ◽  
Zhaofei Zhang ◽  
...  

Author(s):  
Shan Lei ◽  
Zhiwei He ◽  
Tengxiang Chen ◽  
Xingjun Guo ◽  
Zhirui Zeng ◽  
...  

Abstract Background Accumulation evidence indicates the vital role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including pancreatic cancer (PC). However, the role and the molecular mechanism of long non-coding RNA 00976 is unclear in pancreatic cancer. Methods In situ hybridization (ISH) and qRT-PCR was performed to investigate the association between linc00976 expression and the clinicopathological characteristics and prognosis of patients with PC. Subsequently, linc00976 over-expression vector and shRNAs were transfected into PC cells to up-regulate or down-regulate linc00976 expression. Loss- and gain-of function assays were performed to investigate the role of linc00976 in proliferation and metastasis in vitro and vivo. ITRAQ, bioinformatic analysis and rescue assay were used to illustrate the ceRNA mechanism network of linc00976/miR-137/OTUD7B and its downstream EGFR/MAPK signaling pathway. Results linc00976 expression was overexpressed in PC tissues and cell lines and was positively associated with poorer survival in patients with PC. Function studies revealed that linc00976 knockdown significantly suppressed cell proliferation, migration and invasion in vivo and in vitro, whereas its overexpression reversed these effects. Based on Itraq results and online database prediction, Ovarian tumor proteases OTUD7B was found as a downstream gene of linc00976, which deubiquitinated EGFR mediates MAPK signaling activation. Furthermore, Bioinformatics analysis and luciferase assays and rescue experiments revealed that linc00976/miR137/OTUD7B established the ceRNA network modulating PC cell proliferation and tumor growth. Conclusion The present study demonstrates that linc00976 enhances the proliferation and invasion ability of PC cells by upregulating OTUD7B expression, which was a target of miR-137. Ultimately, OTUD7B mediates EGFR and MAPK signaling pathway, suggesting that linc00976/miR-137/OTUD7B/EGFR axis may act as a potential biomarker and therapeutic target for PC.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2937-2937
Author(s):  
Manujendra N Saha ◽  
Hua Jiang ◽  
Yijun Yang ◽  
Donna Reece ◽  
Hong Chang

Abstract Abstract 2937 Mutation of p53, a tumor suppressor protein, is relatively rare (∼10% in newly diagnosed patients) in multiple myeloma (MM). However, p53 mutations/deletions are important risk factors for predicting the resistant to chemotherapy and no treatment is currently available for this subgroup of patients. MIRA-1, a novel class of small molecules with the ability to restore wild type conformation and function to mutant p53, induces apoptosis in different types of solid tumors harboring mutant p53. However, its effect on MM cells is not known. In this study we examined the ability of MIRA-1 to induce cytotoxic and apoptotic response in MM cells and inhibit tumor growth in MM mouse xenograft model. In addition, we explored the molecular mechanisms of MIRA-1-induced apoptosis in MM cells. Treatment of MM cells with MIRA-1 resulted in a time- and dose-dependent decrease in survival and increase in apoptosis of MM cells harboring either wild type (MM.1S, H929) or mutant (U266, 8226, and LP1) p53 suggesting that MIRA-induced apoptosis in MM cells is independent of p53 status. The IC50 of MIRA-1 observed in these cells was ranged between 10 and 15 μM. In addition, MIRA-1 elicited a dose-dependent inhibition of myeloma cell growth in seven primary MM samples with an average IC50of 10 μM. Two of the seven patient samples harbors p53 mutations/deletions. In contrast, MIRA-1 did not have a significant inhibitory effect on the survival of bone marrow or peripheral blood mononuclear cells obtained from three healthy donors at the concentrations (10–20 μM) that induced apoptosis of MM cells, indicating a preferential killing of myeloma cells by this drug. Apoptosis induced by MIRA-1 in MM cells harbouring either wild type or mutant p53 was associated with time- and dose-dependent activation of caspas-8, caspase-3 and PARP with subsequent up-regulation of a pro-apoptotic protein, Noxa and down-regulation of an anti-apoptotic protein, Mcl-1. Interestingly, MIRA-1 did not significantly modulate the level of p53 expression, although immunoprecipitation studies confirmed the restoration of wild type conformation of mutant p53 in LP1 and 8226 cells. Importantly, genetic knockdown of p53 using siRNA against wild type or mutant p53 had only a little effect on apoptosis induction by MIRA-1 in MM.1S or LP1 cells, respectively, confirming that apoptosis induction by MIRA-1 in MM cells is independent of p53. Furthermore, the combination of MIRA-1 with current anti-myeloma agents, dexamethasone or doxorubicin displayed synergistic cytotoxic response in MM.1S or LP1 cells (CI<1; p<0.05). To delineate the molecular mechanisms of apoptosis in MM cells induced by MIRA-1, we performed RT2 profiler PCR array analysis for the differential expression of 84 genes related to mitogen activated protein kinase (MAPK) signaling pathway. A significant number of genes of the MAPK family including MAP3K: MAP3K2 (MEKK2), MAP3K4 (MEKK4), PAK1; MAP2K: MAP2K5 (MEK5); and MAPK: MAPK11 (p38bMAPK) as well as transcription factors such as c-Jun, c-FOS, EGR1, and MKNK1, whose expression is induced by MAPK signaling, were up-regulated by more than 2-fold in MIRA-1-treated 8226 cells. On the other hand, expression of the scaffolding/anchoring genes, MAPK8IP2 (JIP-1) was down-regulated by ∼2-fold. Up-regulations of c-Jun, c-Fos, and EGR1 at their protein levels were further confirmed by Western blot analysis of MM.1S and 8226 cells treated with MIRA-1. Importantly, Western blot analysis revealed that treatment of MIRA-1 resulted in a time- and dose-dependent increase of phosphorylated p38 MAPK level in both MM.1S and 8226 cells. Taken together, our data indicates that activation of the MAPK signaling pathway is, at least in part, associated with MIRA-1-induced apoptosis of MM cells. Finally, we evaluated anti-tumorigenic potential of MIRA-1 in MM xenograft SCID mouse models. 8266 cells were inoculated into SCID mice and the mice received i.p. injections of either 100 μL PBS (control) or 10 mg/kg MIRA-1 once daily for 18 days after tumor formation was evident. Administration of MIRA-1 resulted in significant inhibition of tumor growth (p<0.05) and increase in survival (p=0.007) of the mice with no apparent toxicity. Our study for the first time demonstrates potent in vitro and in vivo anti-myeloma activity of MIRA-1 and thus providing a framework for clinical evaluation of MIRA-1 either alone or in combination with current anti-myeloma agents. Disclosures: Reece: Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Otsuka: Honoraria, Research Funding; Millennium Pharmaceuticals: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document