scholarly journals Identification of molecular markers associated with diagnosis and prognosis in lung adenocarcinoma by bioinformatics analysis

2021 ◽  
Author(s):  
Zimeng Wei ◽  
Linnan Zang ◽  
Min Zhao

Abstract Background: Lung adenocarcinoma (LUAD) is the main histological subtype of lung cancer. However, the molecular mechanism underlying LUAD is not yet clearly defined, but elucidating this process in detail would be of great significance for clinical diagnosis and treatment.Methods: Gene expression profiles were retrieved from Gene Expression Omnibus database (GEO), and the common differentially expressed genes (DEGs) were identified by online GEO2R analysis tool. Subsequently, the enrichment analysis of function and signaling pathways of DEGs in LUAD were performed by gene ontology (GO) and The Kyoto Encyclopedia of Genes and Genomics (KEGG) analysis. The protein-protein interaction (PPI) networks of the DEGs were established through the Search Tool for the Retrieval of Interacting Genes (STRING) database and hub genes were screened by plug-in CytoHubba in Cytoscape. Afterwards, the miRNAs and the hub genes network was constructed via miRWalk. Finally, receiver operating characteristic (ROC) curve and Kaplan-Meier plotter were performed to analyze the diagnosis and prognosis efficacy of hub genes.Results: A total of 312 DEGs were identified, including 74 up-regulated and 238 down-regulated genes. GO analysis results showed that DEGs were mainly enriched in biological processes including composition of extracellular matrix, regulation of angiogenesis and so on. KEGG analysis results revealed DEGs were mainly enrolled in cell adhesion signaling pathway. Subsequently, 10 hub genes, CDC20, CENPF, TPX2, TOP2A, KIAA0101, CDCA7, ASPM, ECT2, UBE2T and COL1A1, were identified. And TOP2A, CDCA7, TPX2 and COL1A1 showed strong relationships with each other and the miRNAs nearby in miRNAs-mRNA network obtained by miRWalk website. Finally, all these 10 hub genes were found significantly related to the diagnosis and prognosis of LUAD (p<0.05). Conclusions: Our results suggested that TOP2A, CDCA7, TPX2 and COL1A1 might present predictive value for the development and prognosis in LUAD, and might be used as potential molecular markers for the diagnosis and treatment of LUAD.

2020 ◽  
Author(s):  
Zimeng Wei ◽  
Linnan Zang ◽  
Min Zhao

Abstract Background:Lung adenocarcinoma (LUAD) is the main histological subtype of lung cancer. However, the molecular mechanism underlying LUAD is not yet clearly defined, but elucidating this process in detail would be of great significance for clinical diagnosis and treatment. Our aim is to identify the candidate key genes and pathways associated with diagnosis and prognosis in LUAD.Methods:In this study, three gene expression profiles GSE118370, GSE32863 and GSE43458 were retrieved from Gene Expression Omnibus database (GEO), and the common differentially expressed genes (DEGs) were identified by online GEO2R analysis tool. Subsequently, the enrichment analysis of function and signaling pathways of DEGs in LUAD were performed by gene ontology (GO) and The Kyoto Encyclopedia of Genes and Genomics (KEGG) analysis. The protein-protein interaction (PPI) networks of the DEGs were established through the Search Tool for the Retrieval of Interacting Genes (STRING) database and hub genes were screened by plug-in CytoHubba in Cytoscape. Afterwards, the miRNAs and the hub genes network was constructed via miRWalk. Finally, receiver operating characteristic (ROC) curve and Kaplan-Meier plotter were performed to analyze the diagnosis and prognosis efficacy of hub genes. Results: A total of 311 DEGs were identified, including 74 up-regulated and 238 down-regulated genes. GO analysis results showed that DEGs were mainly enriched in biological processes including composition of extracellular matrix, regulation of angiogenesis and so on. KEGG analysis results revealed DEGs were mainly enrolled in cell adhesion signaling pathway. Subsequently, 10 hub genes, CDC20, CENPF, TPX2, TOP2A, KIAA0101, CDCA7, ASPM, ECT2, UBE2T and COL1A1, were identified. And TOP2A, CDCA7, TPX2 and COL1A1 showed strong relationships with each other and the miRNAs nearby in miRNAs-mRNA network obtained by miRWalk website. Finally, all these 10 hub genes were found significantly related to the diagnosis and prognosis of LUAD (p<0.05). Conclusions: The identification of hub genes in this study will help us to understand the pathogenesis of LUAD, especially the molecular mechanisms of its development. Our results suggested that TOP2A, CDCA7, TPX2 and COL1A1 might present predictive value for the development and prognosis in LUAD, and might be used as potential molecular markers for the diagnosis and treatment of LUAD.


2021 ◽  
Author(s):  
Zimeng Wei ◽  
Min Zhao ◽  
Linnan Zang

Abstract Background Lung adenocarcinoma (LUAD) is the main histological subtype of lung cancer. However, the molecular mechanism underlying LUAD is not yet clearly defined, but elucidating this process in detail would be of great significance for clinical diagnosis and treatment. Methods Gene expression profiles were retrieved from Gene Expression Omnibus database (GEO), and the common differentially expressed genes (DEGs) were identified by online GEO2R analysis tool. Subsequently, the enrichment analysis of function and signaling pathways of DEGs in LUAD were performed by gene ontology (GO) and The Kyoto Encyclopedia of Genes and Genomics (KEGG) analysis. The protein-protein interaction (PPI) networks of the DEGs were established through the Search Tool for the Retrieval of Interacting Genes (STRING) database and hub genes were screened by plug-in CytoHubba in Cytoscape. Afterwards, we detected the expression of hub genes in LUAD and other cancers via GEPIA, Oncomine and HPA databases. Finally, Kaplan-Meier plotter were performed to analyze the prognosis efficacy of hub genes. Results 74 up-regulated and 238 down-regulated DEGs were identified. As for the up-regulated DEGs, KEGG analysis results revealed they were mainly enrolled in protein digestion and absorption. However, the down-regulated DEGs were primarily enriched in cell adhesion molecules. Subsequently, 9 hub genes: KIAA0101, CDCA7, TOP2A, CDC20, ASPM, TPX2, CENPF, UBE2T and ECT2, were identified and showed higher expression in both LUAD and other cancers. Finally, all these hub genes were found significantly related to the prognosis of LUAD (p < 0.05). Conclusions Our results screened out the hub genes and pathways that were related to the development and prognosis of LUAD, which could provide new insight for the future molecularly targeted therapy and prognosis evaluation of LUAD.


2021 ◽  
Author(s):  
Jiefang Zhou ◽  
Xiaowei Ji ◽  
Xiuwei Shen ◽  
Kefeng Yan ◽  
Peng Huang ◽  
...  

Abstract Objectives We identified functional genes and studied the underlying molecular mechanisms of diabetic cardiomyopathy (DCM) using bioinformatics tools. Methods Original gene expression profiles were obtained from the GSE21610 and GSE112556 datasets. We used GEO2R to screen the differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on DEGs. Protein–protein interaction (PPI) networks of DEGs were constructed using STRING and hub genes of signaling pathways were identified using Cytoscape. Aberrant hub gene expression was verified using The Cancer Genome Atlas dataset. Connectivity Map was used to predict the drugs that could treat DCM. Results The DEGs in DCM were mainly enriched in the nuclei and cytoplasm and involved in DCM- and chemokine-related signaling pathways. In the PPI network, 32 nodes were chosen as hub nodes and an RNA interaction network was constructed with 517 interactions. The expression of key genes (JPIK3R1, CCR9, XIST, WDFY3.AS2, hsa-miR-144-5p, and hsa-miR-146b-5p) was significantly different between DCM and normal tissues. Danazol, ikarugamycin, and semustine were identified as therapeutic agents against DCM using CMAP. Conclusion The identified hub genes could be associated with DCM pathogenesis and the above drugs could be used for treating DCM.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng Zhang ◽  
Bingye Zhang ◽  
Di Meng ◽  
Chunlin Ge

Abstract Background The incidence of cholangiocarcinoma (CCA) has risen in recent years, and it has become a significant health burden worldwide. However, the mechanisms underlying tumorigenesis and progression of this disease remain largely unknown. An increasing number of studies have demonstrated crucial biological functions of epigenetic modifications, especially DNA methylation, in CCA. The present study aimed to identify and analyze methylation-regulated differentially expressed genes (MeDEGs) involved in CCA tumorigenesis and progression by bioinformatics analysis. Methods The gene expression profiling dataset (GSE119336) and gene methylation profiling dataset (GSE38860) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified using the limma packages of R and GEO2R, respectively. The MeDEGs were obtained by overlapping the DEGs and DMGs. Functional enrichment analyses of these genes were then carried out. Protein–protein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape to determine hub genes. Finally, the results were verified based on The Cancer Genome Atlas (TCGA) database. Results We identified 98 hypermethylated, downregulated genes and 93 hypomethylated, upregulated genes after overlapping the DEGs and DMGs. These genes were mainly enriched in the biological processes of the cell cycle, nuclear division, xenobiotic metabolism, drug catabolism, and negative regulation of proteolysis. The top nine hub genes of the PPI network were F2, AHSG, RRM2, AURKB, CCNA2, TOP2A, BIRC5, PLK1, and ASPM. Moreover, the expression and methylation status of the hub genes were significantly altered in TCGA. Conclusions Our study identified novel methylation-regulated differentially expressed genes (MeDEGs) and explored their related pathways and functions in CCA, which may provide novel insights into a further understanding of methylation-mediated regulatory mechanisms in CCA.


Author(s):  
Congcong Wang ◽  
Jianping Guo ◽  
Xiaoyang Zhao ◽  
Jia Jia ◽  
Wenting Xu ◽  
...  

Background: To address the biomarkers that correlated with the prognosis of patients with PDCA using bioinformatics analysis. Methods: The raw data of genes were obtained from the Gene Expression Omnibus. We screened differently expressed genes (DEGs) by Rstudio. Database for Annotation,Visualization and Intergrated Discovery was used to investigate their biological function by Gene Ontology(GO) and Kyoto Encyclopedia of Genes (KEGG) analysis. Protein-protein interaction of these DEGs were analyzed based on the Search Tool for the Retrieval of Interacting Genes database (STRING) and visualized by Cytoscape. Genes calculated by CytoHubba with degree >10 were identified as hub genes. Then, the identified hub genes were verified by UALCAN online analysis tool to evaluate the prognostic value in PDCA. Results: Three expression profiles (GSE15471, GSE16515 and GSE32676) were downloaded from GEO database. The three sets of DEGs exhibited an intersection consisting of 223 genes (214 upregulated DEGs and 9 downregulated DEGs). GO analysis showed that the 223 DEGs were significantly enriched in extracellular exosome, plasma membrane and extracellular space. ECM-receptor interaction, PI3K-Akt signaling pathway and Focal adhesion were the most significantly enriched pathway according to KEGG analysis. By combining the results of Cytohubba, 30 hub genes with a high degree of connectivity were picked out. Finally, we candidated 3 biomarkers by UALCAN online survival analysis, including CEP55, ANLN and PRC1. Conclusion: we identified CEP55, ANLN and PRC1 may be the potential biomarkers and therapeutic targets of PDCA, which used for prognostic assessment and scheme selection.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhanyu Yang ◽  
Delong Liu ◽  
Rui Guan ◽  
Xin Li ◽  
Yiwei Wang ◽  
...  

Abstract Background Heterotopic ossification (HO) represents pathological lesions that refer to the development of heterotopic bone in extraskeletal tissues around joints. This study investigates the genetic characteristics of bone marrow mesenchymal stem cells (BMSCs) from HO tissues and explores the potential pathways involved in this ailment. Methods Gene expression profiles (GSE94683) were obtained from the Gene Expression Omnibus (GEO), including 9 normal specimens and 7 HO specimens, and differentially expressed genes (DEGs) were identified. Then, protein–protein interaction (PPI) networks and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed for further analysis. Results In total, 275 DEGs were differentially expressed, of which 153 were upregulated and 122 were downregulated. In the biological process (BP) category, the majority of DEGs, including EFNB3, UNC5C, TMEFF2, PTH2, KIT, FGF13, and WISP3, were intensively enriched in aspects of cell signal transmission, including axon guidance, negative regulation of cell migration, peptidyl-tyrosine phosphorylation, and cell-cell signaling. Moreover, KEGG analysis indicated that the majority of DEGs, including EFNB3, UNC5C, FGF13, MAPK10, DDIT3, KIT, COL4A4, and DKK2, were primarily involved in the mitogen-activated protein kinase (MAPK) signaling pathway, Ras signaling pathway, phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathway, and Wnt signaling pathway. Ten hub genes were identified, including CX3CL1, CXCL1, ADAMTS3, ADAMTS16, ADAMTSL2, ADAMTSL3, ADAMTSL5, PENK, GPR18, and CALB2. Conclusions This study presented novel insight into the pathogenesis of HO. Ten hub genes and most of the DEGs intensively involved in enrichment analyses may be new candidate targets for the prevention and treatment of HO in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinying Wei ◽  
Guangping Meng ◽  
Jing Wu ◽  
Qiang Zhang ◽  
Jie Zhang

AbstractThis study aimed to characterize the key survival-specific genes for lung adenocarcinoma (LUAD) using machine-based learning approaches. Gene expression profiles were download from gene expression omnibus to analyze differentially expressed genes (DEGs) in LUAD tissues versus healthy lung tissue and to construct protein–protein interaction (PPI) networks. Using high-dimensional datasets of cancer specimens from clinical patients in the cancer genome atlas, gene set enrichment analysis was employed to assess the independent effect of meiotic nuclear divisions 1 (MND1) expression on survival status, and univariate and multivariate Cox regression analyses were applied to determine the associations of clinic-pathologic characteristics and MND1 expression with overall survival (OS). A set of 495 DEGs (145 upregulated and 350 downregulated) was detected, including 63 hub genes with ≥ 10 nodes in the PPI network. Among them, MND1 was participated in several important pathways by connecting with other genes via 17 nodes in lung cancer, and more frequently expressed in LUAD patients with advancing stage (OR = 1.68 for stage III vs. stage I). Univariate and multivariate Cox analyses demonstrated that the expression level of MND1 was significantly and negatively correlated with OS. Therefore, MND1 is a promising diagnostic and therapeutic target for LUAD.


2020 ◽  
Author(s):  
Xilin Hu ◽  
Hanlin Xu ◽  
Wenjie Jiao ◽  
Kaihua Tian

Abstract Background: Cancer-related death is mainly caused by lung adenocarcinoma (LUAD), an aggressive malignant tumor. Therefore, the identification of important LUAD-related genes and the further analysis of its prognostic significance are critical for the survival of LUAD patients.Methods: Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene expression analysis methods were adopted to screen out TCGA-LUAD database and the gene expression profiles of GSE32863 from GEO. Functional annotation analysis and protein-protein interaction (PPI) network were conducted on differential co-expression genes. Furthermore, survival analysis was carried out on twelve hub genes that were identified by applying the CytoHubba plugin of Cytoscape. Finally, we validated the protein level of survival-related gene in HPA database.Results: A total of 358 differential co-expression genes were extracted from the database of TCGA and GEO. These genes were mainly enriched in extracellular structure organization, cell−substrate adhesion and response to acid chemical (biological process), cell−cell junction and collagen−containing extracellular matrix (cellular component), DNA−binding transcription activator activity, glycosaminoglycan binding, and growth factor binding (molecular function). In the KEGG analysis, the main pathways were Drug metabolism−cytochrome P450. Moreover, in a PPI network, the 12 hub genes (GNG11, ADRB2, ADCY4, TGFBR2, IL6, GPC3, VIPR1, GRK5, CAV1, RAMP3, RAMP2, and CALCRL) were identified. The expression level of ADCY4, VIPR1, and TGFBR2 was corresponded with clinical stages and overall survival (OS) in LUAD patients. Finally, the protein level of ADCY4 and VIPR1 was down-regulated consistently with mRNA levels in LUAD samples.Conclusion: Perhaps, ADCY4, VIPR1 and TGFBR2 play important role in tumorigenesis, so they will serve as prognostic biomarkers and therapeutic targets of LUAD in the future.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9362
Author(s):  
Xiaoguang Qi ◽  
Chunyan Qi ◽  
Xindan Kang ◽  
Yi Hu ◽  
Weidong Han

Background Increasing bodies of evidence reveal that targeting a programmed cell death protein 1 (PD-1) monoclonal antibody is a promising immunotherapy for lung adenocarcinoma. Although PD receptor ligand 1 (PDL1) expression is widely recognized as the most powerful predictive biomarker for anti-PD-1 therapy, its regulatory mechanisms in lung adenocarcinoma remain unclear. Therefore, we conducted this study to explore differentially expressed genes (DEGs) and elucidate the regulatory mechanism of PDL1 in lung adenocarcinoma. Methods The GSE99995 data set was obtained from the Gene Expression Omnibus (GEO) database. Patients with and without PDL1 expression were divided into PDL1-positive and PDL1-negative groups, respectively. DEGs were screened using R. The Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed using the Database for Annotation, Visualization and Integrated Discovery. Protein–protein interaction (PPI) networks of DEGs was visualized using Cytoscape, and the MNC algorithm was applied to screen hub genes. A survival analysis involving Gene Expression Profiling Interactive Analysis was used to verify the GEO results. Mutation characteristics of the hub genes were further analyzed in a combined study of five datasets in The Cancer Genome Atlas (TCGA) database. Results In total, 869 DEGs were identified, 387 in the PDL1-positive group and 482 in the PDL1-negative group. GO and KEGG analysis results of the PDL1-positive group mainly exhibited enrichment of biological processes and pathways related to cell adhesion and the peroxisome proliferators-activated receptors (PPAR) signaling pathway, whereas biological process and pathways associated with cell division and repair were mainly enriched in the PDL1-negative group. The top 10 hub genes were screened during the PPI network analysis. Notably, survival analysis revealed BRCA1, mainly involved in cell cycle and DNA damage responses, to be a novel prognostic indicator in lung adenocarcinoma. Moreover, the prognosis of patients with different forms of lung adenocarcinoma was associated with differences in mutations and pathways in potential hub genes. Conclusions PDL1-positive lung adenocarcinoma and PDL1-negative lung adenocarcinoma might be different subtypes of lung adenocarcinoma. The hub genes might play an important role in PDL1 regulatory pathways. Further studies on hub genes are warranted to reveal new mechanisms underlying the regulation of PDL1 expression. These results are crucial for understanding and applying precision immunotherapy for lung adenocarcinoma.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Elham Karimizadeh ◽  
Ali Sharifi-Zarchi ◽  
Hassan Nikaein ◽  
Seyedehsaba Salehi ◽  
Bahar Salamatian ◽  
...  

Abstract Background Systemic sclerosis (SSc), a multi-organ disorder, is characterized by vascular abnormalities, dysregulation of the immune system, and fibrosis. The mechanisms underlying tissue pathology in SSc have not been entirely understood. This study intended to investigate the common and tissue-specific pathways involved in different tissues of SSc patients. Methods An integrative gene expression analysis of ten independent microarray datasets of three tissues was conducted to identify differentially expressed genes (DEGs). DEGs were mapped to the search tool for retrieval of interacting genes (STRING) to acquire protein–protein interaction (PPI) networks. Then, functional clusters in PPI networks were determined. Enrichr, a gene list enrichment analysis tool, was utilized for the functional enrichment of clusters. Results A total of 12, 2, and 4 functional clusters from 619, 52, and 119 DEGs were determined in the lung, peripheral blood mononuclear cell (PBMC), and skin tissues, respectively. Analysis revealed that the tumor necrosis factor (TNF) signaling pathway was enriched significantly in the three investigated tissues as a common pathway. In addition, clusters associated with inflammation and immunity were common in the three investigated tissues. However, clusters related to the fibrosis process were common in lung and skin tissues. Conclusions Analysis indicated that there were common pathological clusters that contributed to the pathogenesis of SSc in different tissues. Moreover, it seems that the common pathways in distinct tissues stem from a diverse set of genes.


Sign in / Sign up

Export Citation Format

Share Document