scholarly journals Slug and Vimentin Downregulation at the Metastatic Site Is Associated With Skip-N2 Metastasis of Lung Adenocarcinoma

Author(s):  
Yasemin SAYGIDEGER ◽  
Alper AVCI ◽  
Emine BAGIR ◽  
Burcu SAYGIDEĞER DEMİR ◽  
Aycan SEZAN Ms ◽  
...  

Abstract Objective: Lung cancer displays heterogeneity both in the tumor itself and in its metastatic regions. One interesting behavior of the tumor is known as Skip N2 metastasis, which N2 lymph nodes contain tumor cells while N1 are clean. In this study, mRNA levels of epithelial mesenchymal transition (EMT) related genes in skip N2 and normal N2 involvements of non-small cell lung cancer tissues were investigated to evaluate the possible molecular background that may contribute to the pathogenesis of Skip N2 metastasis. Materials and Methods: Eighty-three surgically resected and paraffin embedded lymph node samples of lung cancer patients were analyzed in this study, which 40 of them were Skip N2. N2 tissues were sampled from 50% tumor containing areas and total RNA was extracted. mRNA levels for 18S, E-cadherin, Vimentin, ZEB1 and SLUG were analyzed via qPCR and E-cadherin and vimentin protein levels via immunohistochemistry (IHC). Bioinformatic analysis were adopted using online datasets to evaluate significantly co-expressed genes with SLUG in lung cancer tissue samples.Results: Skip-N2 patients who had adenocarcinoma subtype had better survival rates. Comparative analysis of PCR results indicated that Skip N2 tumor tissues had increased E-Cadherin/Vimentin ratio and ZEB1 mRNA expression, and significantly decreased levels of SLUG. E-cadherin IHC staining were higher in Skip N2 and Vimentin were in Non-Skip N2. TP63 had a strong correlation with SLUG expression in the bioinformatics analyses.Conclusion: The results indicate that, at molecular level, Skip N2 pathogenesis has different molecular background and regulation of SLUG expression may orchestrate the process.

2021 ◽  
Author(s):  
Yasemin Saygideger ◽  
Alper AVCI ◽  
Emine BAGIR ◽  
Burcu Saygıdeğer Demir ◽  
Aycan SEZAN ◽  
...  

Abstract Objective: Lung cancer displays heterogeneity both in the tumor itself and in its metastatic regions. One interesting behavior of the tumor is known as Skip N2 metastasis, which N2 lymph nodes contain tumor cells while N1 are clean. In this study, mRNA levels of epithelial mesenchymal transition (EMT) related genes in skip N2 and normal N2 involvements of non-small cell lung cancer tissues were investigated to evaluate the possible molecular background that may contribute to the pathogenesis of Skip N2 metastasis. Materials and Methods: Eighty-three surgically resected and paraffin embedded lymph node samples of lung cancer patients were analyzed in this study, which 40 of them were Skip N2. N2 tissues were sampled from 50% tumor containing areas and total RNA was extracted. mRNA levels for 18S, E-cadherin, Vimentin, ZEB1 and SLUG were analyzed via qPCR and E-cadherin and vimentin protein levels via immunohistochemistry (IHC). Bioinformatic analysis were adopted using online datasets to evaluate significantly co-expressed genes with SLUG in lung cancer tissue samples.Results: Skip-N2 patients who had adenocarcinoma subtype had better survival rates. Comparative analysis of PCR results indicated that Skip N2 tumor tissues had increased E-Cadherin/Vimentin ratio and ZEB1 mRNA expression, and significantly decreased levels of SLUG. E-cadherin IHC staining were higher in Skip N2 and Vimentin were in Non-Skip N2. TP63 had a strong correlation with SLUG expression in the bioinformatics analyses.Conclusion: The results indicate that, at molecular level, Skip N2 pathogenesis has different molecular background and regulation of SLUG expression may orchestrate the process.


2020 ◽  
Author(s):  
Mei Du ◽  
Piping Gong ◽  
Yun Zhang ◽  
Yanguo Liu ◽  
Xiaozhen Liu ◽  
...  

Abstract Lung cancer is the leading cause of cancer-related death worldwide, with an estimated 1.2 million deaths each year. Despite advances in lung cancer treatment, 5-year survival rates are lower than ~15%, which is attributes to diagnosis limitations and current clinical drug resistance. Recently, more evidence has suggested that epigenome dysregulation is associated with the initiation and progress of cancer, and targeting epigenome-related molecules improves cancer symptoms. Interestingly, some groups reported that the level of methylation of histone 3 lysine 4 (H3K4me3) was increased in lung tumors and participated in abnormal transcriptional regulation. However, a mechanistic analysis is not available. In this report, we found that the SET domain containing 1A (SETD1A), the enzyme for H3K4me3, was elevated in lung cancer tissue compared to normal lung tissue. Knockdown of SETD1A in A549 and H1299 cells led to defects in cell proliferation and epithelial-mesenchymal transition (EMT), as evidenced by inhibited WNT and TGFβ pathways, compared with the control group. Xenograft assays also revealed a decreased tumor growth and EMT in the SETD1A silenced group compared with the control group. Mechanistic analysis suggested that SETD1A might regulate tumor progression via several critical oncogenes, which exhibited enhanced H3K4me3 levels around transcriptional start sites in lung cancer. This study illustrates the important role of SETD1A in lung cancer and provides a potential drug target for treatment.


2020 ◽  
Author(s):  
Mei Du ◽  
Xiuwen Wang ◽  
Piping Gong ◽  
Yun Zhang ◽  
Yanguo Liu ◽  
...  

Abstract Lung cancer is the leading cause of cancer-related death worldwide, with an estimated 1.2 million deaths each year. Despite advances in lung cancer treatment, 5-year survival rates are lower than ~ 15%, which is attributed to diagnosis limitations and current clinical drug resistance. Recently, more evidence has suggested that epigenome dysregulation is associated with the initiation and progress of cancer, and targeting epigenome-related molecules improves cancer symptoms. Interestingly, some groups reported that the level of methylation of histone 3 lysine 4 (H3K4me3) was increased in lung tumors and participated in abnormal transcriptional regulation. However, a mechanistic analysis is not available. In this report, we found that the SET domain containing 1A (SETD1A), the enzyme for H3K4me3, was elevated in lung cancer tissue compared to normal lung tissue. Knockdown of SETD1A in A549 and H1299 cells led to defects in cell proliferation and epithelial-mesenchymal transition (EMT), as evidenced by inhibited WNT and TGFβ pathways, compared with the control group. Xenograft assays also revealed a decreased tumor growth and EMT in the SETD1A silenced group compared with the control group. Mechanistic analysis suggested that SETD1A might regulate tumor progression via several critical oncogenes, which exhibited enhanced H3K4me3 levels around transcriptional start sites in lung cancer. This study illustrates the important role of SETD1A in lung cancer and provides a potential drug target for treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kejun Liu ◽  
Xianwen Chen ◽  
Ligang Wu ◽  
Shiyuan Chen ◽  
Nianxin Fang ◽  
...  

Abstract Background ID1 is associated with resistance to the first generation of EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, the effect of ID1 expression on osimertinib resistance in EGFR T790M-positive NSCLC is not clear. Methods We established a drug-resistant cell line, H1975/OR, from the osimertinib-sensitive cell line H1975. Alterations in ID1 protein expression and Epithelial–mesenchymal transition (EMT)-related proteins were detected with western blot analysis. RT-PCR was used to evaluate the differences of gene mRNA levels. ID1 silencing and overexpression were used to investigate the effects of related gene on osimertinib resistance. Cell Counting Kit-8 (CCK8) was used to assess the proliferation rate in cells with altered of ID1 expression. Transwell assay was used to evaluate the invasion ability of different cells. The effects on the cell cycle and apoptosis were also compared using flow cytometry. Results In our study, we found that in osimertinib-resistant NSCLC cells, the expression level of the EMT-related protein E-cadherin was lower than that of sensitive cells, while the expression level of ID1 and vimentin were higher than those of sensitive cells. ID1 expression levels was closely related to E-cadherin and vimentin in both osimertinib-sensitive and resistant cells. Alteration of ID1 expression in H1975/OR cells could change the expression of E-cadherin. Downregulating ID1 expression in H1975/OR cells could inhibit cell proliferation, reduce cell invasion, promote cell apoptosis and arrested the cell cycle in the G1/G0 stage phase. Our study suggests that ID1 may induce EMT in EGFR T790M-positive NSCLC, which mediates drug resistance of osimertinib. Conclusions Our study revealed the mechanism of ID1 mediated resistance to osimertinib in EGFR T790M-positive NSCLC through EMT, which may provide new ideas and methods for the treatment of EGFR mutated NSCLC after osimertinib resistance.


2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 241-241
Author(s):  
Jugang Wu ◽  
Jiwei Yu ◽  
Yan Gu

241 Background: Aberrant epigenetic modification induces oncogenes expression and promotes cancer development. The histone lysine methyltransferase SETD1A, which specifically methylates H3K4, is involved in tumor growth and metastasis, and its ectopic expression has been detected in aggressive malignancies. Our previous study had reported that SETD1A promoted gastric cancer (GC) proliferation and tumorigenesis. However, the function and molecular mechanisms of SETD1A in GC metastasis remain to be elucidated. Methods: Transwell migration and invasion assay were performed to determine GC cell migration and invasion. Lung metastasis assay was used to detect GC cell metastasis. Western Blot and Real-time qPCR were performed to measure the protein and mRNA levels, respectively. ChIP assay was performed to investigate the methylation of H3K4. The correlation between SETD1A and EMT associated key genes in GC were performed by bioinformatic analysis. Results: In this study, we found that overexpression of SETD1A promotes GC migration and invasion, whereas knockdown of SETD1A suppressed GC migration, invasion and metastasis. Furthermore, knockdown of SETD1A suppressed GC epithelial-mesenchymal transition (EMT) by increasing the expression of epithelial marker E-cadherin, and decreasing the expression of mesenchymal markers, including N-cadherin, Fibronectin and Vimentin. Mechanistically, knockdown of SETD1A reduced the EMT key transcriptional factors snail. SETD1A was recruited to the promoter of snail, where SETD1A could methylate H3K4. However, knockdown of SETD1A decreased the methylation of H3K4 on snail promoter. Rescue of snail restored SETD1A knockdown-induced GC migration and invasion inhibition. In addition, linear correlation between SETD1A and several key EMT genes, including E-cadherin, Fibronectin and snail, in GC specimens obtained from TCGA dataset. Conclusions: In summary, our data reveals that SETD1A mediated EMT process and induced metastasis through epigenetic reprogramming of snail.


2020 ◽  
Author(s):  
Kejun Liu ◽  
Nianxin Fang ◽  
Ligang Wu ◽  
Shiyuan Chen ◽  
Limin Cai ◽  
...  

Abstract Objective To analyzed the effect of ID1 overexpression on osimertinib resistance to T790M positive non-small cell lung cancer (NSCLC). Methods We established drug resistant cell line H1975/OR from osimertinib sensitive cell line H1975. Protein alterations of ID1 and Epithelial mesenchymal transition (EMT) were detected with western blot analysis. RT-PCR was used to evaluate the differences of gene mRNA. ID1 silencing and overexpression was used to investigate the effect of related gene on osimertinib resistance. Cell Counting Kit-8 (CCK8) was used to assess proliferation rate of ID1 differently expressed cells. Cell cycle and apoptosis was compared using flow cytometry. Results In our study, we found that in osimertinib resistant NSCLC cells, the expression level of EMT related protein E-cadherin was lower than that of sensitive cells, while the expression level of ID1 and vimentin was higher than that of sensitive cells. ID1 expression level was closely related to E-cadherin and vimentin both in osimertinib sensitive and resistant cells. Alteration of ID1 expression in H1975/OR cells could change the expression of E-cadherin. Downregulating ID1 expression of H1975/OR cells could promote the apoptosis induced by osimertinib and block cell cycle at G1/G0 stage. Our study indicated that ID1 may induce EMT in T790M positive NSCLC, which mediates drug resistance of osimertinib. Conclusions Our study reveal the mechanism of ID1 mediated resistance to osimertinib in T790M positive NSCLC through EMT, which may provide new ideas and methods for treatment of EGFR mutated NSCLC after osimertinib resistance.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2021 ◽  
Author(s):  
Chi-Chung Wang ◽  
Yuan-Ling Hsu ◽  
Chi-Jen Chang ◽  
Chia-Jen Wang ◽  
Tzu-Hung Hsiao ◽  
...  

Metastasis is a predominant cause of cancer death and the major challenge in treating lung adenocarcinoma (LADC). Therefore, exploring new metastasis-related genes and their action mechanisms may provide new insights for developing a new combative approach to treat lung cancer. Previously, our research team discovered that the expression of the inhibitor of DNA binding 4 (Id4) was inversely related to cell invasiveness in LADC cells by cDNA microarray screening. However, the functional role of Id4 and its mechanism of action in lung cancer metastasis remain unclear. In this study, we report that the expression of Id4 could attenuate cell migration and invasion in vitro and cancer metastasis in vivo. Detailed analyses indicated that Id4 could promote E-cadherin expression through the binding of Slug, cause the occurrence of mesenchymal-epithelial transition (MET), and inhibit cancer metastasis. Moreover, the examination of the gene expression database (GSE31210) also revealed that high-level expression of Id4/E-cadherin and low-level expression of Slug were associated with a better clinical outcome in LADC patients. In summary, Id4 may act as a metastatic suppressor, which could not only be used as an independent predictor but also serve as a potential therapeutic for LADC treatment.


2018 ◽  
Vol 55 (5) ◽  
pp. 622-633 ◽  
Author(s):  
Talita M. M. Raposo-Ferreira ◽  
Becky K. Brisson ◽  
Amy C. Durham ◽  
Renee Laufer-Amorim ◽  
Veronica Kristiansen ◽  
...  

The epithelial-mesenchymal transition (EMT) is a dynamic process linked to metastasis in many tumor types, including mammary tumors. In this study, we evaluated E-cadherin and vimentin immunolocalization in primary canine mammary carcinomas (20 cases) and their respective metastases, as well as their relationship with the core regulators SNAIL/SLUG. To assess the number of cells undergoing the process of EMT, we quantitated double-positive (E-cadherin+/vimentin+) cells using immunofluorescence, via cell counting and image analysis. In addition, SNAIL/SLUG expression was evaluated by established immunohistochemical methods. Primary tumors had significantly more E-cadherin+/vimentin+ co-expression than their paired respective lymph node or distant metastasis, respectively. Furthermore, the percentage of E-cadherin+/vimentin+ cells in grade II and III carcinomas was significantly higher than in grade I tumors. Primary tumors had significantly higher SNAIL/SLUG expression when analyzed based on the percentage of positive cells compared with their respective distant metastases in pairwise comparisons. An inverse correlation was noted between SNAIL/SLUG immunoreactivity and percentage of E-cadherin+/vimentin+ immunopositive cells in primary tumor samples when SNAIL/SLUG immunoreactivity was grouped into 2 categories (high versus low) based on percentage-positive staining. These results show a positive correlation between E-cadherin+/vimentin+ cells and higher tumor grade, establish differences between primary tumor and their respective metastases, and provide further support that EMT plays a critical role in the metastasis of canine mammary carcinoma. Furthermore, these data suggest that modulation of this process could provide greater therapeutic control and provide support for further research to determine if E-cadherin+/vimentin+ co-immunoreactivity imparts predictive value in the clinical outcome of patients with canine mammary carcinomas.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Shu ◽  
Lin Wang ◽  
Fei Han ◽  
Yubin Chen ◽  
Shunjun Wang ◽  
...  

Metastasis is the leading cause of lung cancer-associated death. Downregulated expression of E-cadherin followed by epithelial-mesenchymal transition (EMT) is critical for metastasis initiation in lung cancer. BTBD7 plays essential roles in lung cancer metastasis, but the mechanisms remain unknown. This study aimed to investigate the relationship between BTBD7 and E-cadherin in lung cancer and explore the role of BTBD7 in EMT. Fresh lung cancer and paracancer tissue specimens were collected from 30 patients, and the expression of BTBD7, E-cadherin, N-cadherin, fibronectin, and vimentin was analyzed by qRT-PCR, western blotting, and immunohistochemistry. A549 and HBE cells were cultured and treated with TGF-β1 for 72 h to induce EMT. Western blotting and qRT-PCR were performed to evaluate the expression of BTBD7, E-cadherin, N-cadherin, fibronectin, and vimentin. Then, A549 cells were treated separately with the BTBD7-ENTER plasmid, BTBD7-siRNA, and paclitaxel. After TGF-β1-induced EMT, the abovementioned markers were analyzed by western blotting and qRT-PCR. Wound healing assays were applied to assess the migration ability of cells in different groups. For animal experiments, A549 cells transfected with the BTBD7-ENTER plasmid were transplanted into BALB/c nude mice. After 4 weeks, all nude mice were sacrificed, and tumor tissues were harvested for qRT-PCR, western blot, and immunohistochemical analyses of the abovementioned markers. All experimental results showed that the levels of BTBD7, N-cadherin, fibronectin, and vimentin were increased in lung cancer tissues and cells, while the E-cadherin level was decreased. Transfection experiments showed that BTBD7 inhibited E-cadherin expression and enhanced EMT. Moreover, the migration capacity of lung cancer cells was increased by the high level of BTBD7. We concluded that BTBD7 is highly expressed during lung cancer development and metastasis and can inhibit the expression of E-cadherin and promote EMT in lung cancer. BTBD7 may thus be a therapeutic target for lung cancer.


2020 ◽  
Vol 10 ◽  
Author(s):  
Zhongyu Wang ◽  
Jun Shang ◽  
Zhiqin Li ◽  
Huanhuan Li ◽  
Chufan Zhang ◽  
...  

PIK3CA is a key component of phosphatidylinositol 3-kinase (PI3K) pathway that its involvement in tumorigenesis has been revealed by previous research. However, its functions and potential mechanisms in bladder cancer are still largely undiscovered. Tissue microarray (TMA) with 66 bladder cancer patients was surveyed via immunohistochemistry to evaluate the level of PIK3CA and CUX1 and we found upregulation of PIK3CA in bladder cancer tissue and patients with higher level of PIK3CA presented with poorer prognosis. Overly expressed PIK3CA promoted growth, migration, invasion, and metastasis of bladder cancer cells and knockdown of PIK3CA had the opposite effect. Gain-of-function and loss-of-function studies showed that PIK3CA expression was facilitated by CUX1, leading to activation of epithelial-mesenchymal transition (EMT), accompanied by upregulated expression of Snail, β-catenin, Vimentin and downregulated expression of E-cadherin in the bladder cancer cell lines. Besides, over-expressed CUX1 could restore the expression of downregulated Snail, β-catenin, Vimentin and E-cadherin which was induced by PIK3CA knockdown. These results revealed that PIK3CA overexpression in bladder cancer was regulated by the transcription factor CUX1, and PIK3CA exerted its biological effects by activating EMT.


Sign in / Sign up

Export Citation Format

Share Document