scholarly journals A comparative account of biogenic synthesis of silver nanoparticles using in-house potential probiotics and their antimicrobial activity against challenging antibiotic resistant pathogens

Author(s):  
SHAKSHI SHARMA ◽  
NIVEDITA SHARMA ◽  
NEHA KAUSHAL

Abstract The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11 and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotics synthesized silver nanoparticles shows maximum Surface Plasmon Resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning Electron Microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission Electron Microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10-50 nm, with smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNP was also found to be effective against different bacterial and fungal pathogens viz. antibiotic resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes , Pythium aphanidermatum , Fusarium oxysporum and Phytopthora parasitica . However, L.crustorum F11 synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 0.61mm) and F. oxysporum (23 ). Findings from this study provide a durable and ecofriendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug resistant microorganisms.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 97
Author(s):  
Suresh V. Chinni ◽  
Subash C. B. Gopinath ◽  
Periasamy Anbu ◽  
Neeraj Kumar Fuloria ◽  
Shivkanya Fuloria ◽  
...  

The present study was planned to characterize and analyze the antimicrobial activity of silver nanoparticles (AgNP) biosynthesized using a Coccinia indica leaf (CIL) ethanolic extract. The present study included the preparation of CIL ethanolic extract using the maceration process, which was further used for AgNP biosynthesis by silver nitrate reduction. Biosynthetic AgNPs were characterized using UV–Visible spectrometry, zeta potential analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) spectrometry. The biogenic AgNP and CIL extracts were further investigated against different bacterial strains for their antimicrobial activity. The surface plasmon resonance (SPR) signal at 425 nm confirmed AgNP formation. The SEM and TEM data revealed the spherical shape of biogenic AgNPs and size in the range of 8 to 48 nm. The EDX results verified the presence of Ag. The AgNPs displayed a zeta potential of −55.46 mV, suggesting mild AgNP stability. Compared to Gram-positive bacteria, the biogenic AgNPs demonstrated high antibacterial potential against Gram-negative bacteria. Based on the results, the current study concluded that AgNPs based on CIL extract have strong antibacterial potential, and it established that AgNP biosynthesis using CIL ethanol extract is an effective process.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1936 ◽  
Author(s):  
M. A. Abu-Saied ◽  
Mohamed Elnouby ◽  
Tarek Taha ◽  
Muhammad El-shafeey ◽  
Ali G. Alshehri ◽  
...  

The wide distribution of infections-related pathogenic microbes is almost related to the contamination of food and/or drinking water. The current applied treatments face some limitations. In the current study, k-carrageenan polymer was used as supporting material for the proper/unreleased silver nanoparticles that showed strong antimicrobial activity against six pathogenic bacteria and yeast. The bio-extract of the pupa of green bottle fly was used as the main agent for the synthesis of silver nanoparticles. The qualitative investigation of biologically synthesized silver nanoparticles was determined using UV-Vis spectrophotometric analysis; however, the size of nanoparticles was in range of 30–100 nm, as confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle size analyzer. The proper integration of silver nanoparticles into the polymeric substrate was also characterized through fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), SEM, and tensile strength. The antimicrobial activity of k-carrageenan/silver nanoparticles against Gram positive, Gram negative, and yeast pathogens was highly effective. These results indicate the probable exploitation of the polymeric/nanoparticles composite as an extra stage in water purification systems in homes or even at water treatment plants.


Author(s):  
Tejaswini R ◽  
Dr Anisa Athar

An extract obtained from roasted Coffea arabica bean was used as bio-reductant and mixed with standard AgNO3 (0.1M) solution. The formation of silver nanoparticles(AgNP) was observed by the change in the colour of the solution (coffee extract + AgNO3) from brown to blackish brown. UV-vis spectrophotometry analysis showed maximum adsorption at 240nm. The SEM analysis showed the morphology of the AgNPs as oval and spherical and the sized of the particles between the range of 25nm to 51nm. The crystalline size of the AgNPs was analyzed between the range of 10nm to 30nm employing XRD technique. The antimicrobial activity study of the synthesized silver nanoparticles showed zone of inhibition against the clinically important bacteria namely- E coli, Pseudomonas, Klebsiella, Staphylococcus and Bacillus.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Toga Khalid Mohamed ◽  
Marivt Osman Widdatallah ◽  
Maida Musa Ali ◽  
Afraa Mubarak Alhaj ◽  
DhiaEldin AbdElmagied Elhag

An extremely worrying and alarming increase in the level of multiple drug resistance is reported in Sudan, in which bacterial strains are becoming resistant to many commonly available antibiotics. Eventually, it is becoming extremely difficult to treat debilitating infections. In search of promising solutions to this arising crisis, Camellia sinensis silver nanoparticles were synthesized using the green synthesis method. The synthesis of the Camellia sinensis silver nanoparticles is confirmed using analytical methods as ultraviolet-visible spectroscopy, X-ray diffractometer, and scanning electron microscopy. Using the ultraviolet-visible spectroscopy, an absorption band of 412 nm was observed. Furthermore, scanning electron microscopy revealed the presence of silver nanoparticles which fell within the range of 1–100 nm, and X-ray diffractometer analysis showed three intense peaks with a maximum intense peak at 24.3 theta. Nanoparticles distribution between 12 nm and 64 nm was observed with an average diameter of 18.115 nm. It also revealed orthorhombic-shaped nanoparticles. The synthesized nanoparticles showed antimicrobial activity against Staphylococcus aureus with a zone of inhibition of 7 mm, but none was detected against Escherichia coli. The obtained physicochemical properties were correlated with the antibacterial activity of the silver nanoparticles.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3220 ◽  
Author(s):  
Tahmina Monowar ◽  
Md. Rahman ◽  
Subhash Bhore ◽  
Gunasunderi Raju ◽  
Kathiresan Sathasivam

Antibiotic resistance is one of the most important global problems currently confronting the world. Different biomedical applications of silver nanoparticles (AgNPs) have indicated them to be promising antimicrobial agents. In the present study, extracellular extract of an endophytic bacterium, Pantoea ananatis, was used for synthesis of AgNPs. The synthesized AgNPs were characterized by UV–Vis spectroscopy, FTIR, transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and Zeta potential. The antimicrobial potential of the AgNPs against pathogenic Staphylococcus aureus subsp. aureus (ATCC 11632), Bacillus cereus (ATCC 10876), Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 10145) and Candida albicans (ATCC 10231), and multidrug resistant (MDR) Streptococcus pneumoniae (ATCC 700677), Enterococcus faecium (ATCC 700221) Staphylococcus aureus (ATCC 33592) Escherichia coli (NCTC 13351) was investigated. The synthesized spherical-shaped AgNPs with a size range of 8.06 nm to 91.32 nm exhibited significant antimicrobial activity at 6 μg/disc concentration against Bacillus cereus (ATCC 10876) and Candida albicans (ATCC 10231) which were found to be resistant to conventional antibiotics. The synthesized AgNPs showed promising antibacterial efficiency at 10 µg/disc concentration against the MDR strains. The present study suggests that AgNPs synthesized by using the endophytic bacterium P. ananatis are promising antimicrobial agent.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2615
Author(s):  
Md. Amdadul Huq ◽  
Shahina Akter

In the present study, silver nanoparticles (AgNPs), biosynthesized using culture supernatant of bacterial strain Paenarthrobacter nicotinovorans MAHUQ-43, were characterized and their antimicrobial activity was investigated against both Gram-positive Bacillus cereus and Gram-negative bacteria Pseudomonas aeruginosa. Bacterial-mediated synthesized AgNPs were characterized by UV-Visible (UV-Vis) spectrophotometer, field emission-transmission electron microscopy (FE-TEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) analysis. The UV-Vis spectral analysis showed the absorption maxima at 466 nm which assured the synthesis of AgNPs. The FE-TEM analysis revealed the spherical shape of nanoparticles with the size range from 13 to 27 nm. The EDX and XRD analysis ensured the crystalline nature of biosynthesized AgNPs. The FTIR analysis revealed the involvement of different biomolecules for the synthesis of AgNPs as reducing and capping agents. The bacterial-mediated synthesized AgNPs inhibited the growth of pathogenic strains B. cereus and P. aeruginosa and developed a clear zone of inhibition (ZOI). The MIC and MBC for both pathogens were 12.5 µg/mL and 25 µg/mL, respectively. Moreover, field emission scanning electron microscopy analysis revealed that the synthesized AgNPs can destroy the outer membrane and alter the cell morphology of treated pathogens, leading to the death of cells. This study concludes the eco-friendly, facile and rapid synthesis of AgNPs using P. nicotinovorans MAHUQ-43 and synthesized AgNPs showed excellent antimicrobial activity against both Gram-positive and Gram-negative pathogens.


2015 ◽  
Vol 18 (2) ◽  
pp. 75 ◽  
Author(s):  
Abdel Ghany Tarek Mohamed

Microbial assisted biosynthesis of nanoparticles is a rapidly progressing area of nanobiotechnology. Inthis paper Stachybotrys chartarum assisted extracellular synthesis of silver nanoparticles (AgNPs) is reportedwhen challenged with 1mM silver nitrate (AgNO3). The characterization of AgNPs was carried out visualobservation and UV-Vis spectrophotometry. Further analysis carried out by Fourier Transform InfraredSpectroscopy (FTIR), provides evidence for the presence of proteins as capping agent, which helps in increasingthe stability of the synthesized AgNPs. Transmission Electron Microscopy (TEM) investigations confi rmedthat AgNPs were formed. The synthesized silver nanoparticles were found in the range of 65-108 nm. Finally,the antimicrobial susceptibility of AgNPs synthesized was investigated which exhibited more potent activityagainst bacteria than fungi compared with using silver nitrate at concentration 1mM. Keywords: Antimicrobial activity, Stachybotrys chartarum, Silver nanoparticles


2016 ◽  
Vol 1 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Aliakbar Nasiri ◽  
Roghayeh Afsar Gharebagh ◽  
Seyed Ali Nojoumi ◽  
Majidreza Akbarizadeh ◽  
Sharareh Harirchi ◽  
...  

2020 ◽  
Vol 71 (10) ◽  
pp. 50-57
Author(s):  
Kamran Mehdi ◽  
Wajid Rehman ◽  
Obaid-Ur-rahman Abid ◽  
Srosh Fazil ◽  
Muhammad Sajid ◽  
...  

The aim of the present study is to search out nontoxic silver nanoparticles synthesized from the leaf extract of two plants Ajuga parviflora Benth and Digera muricata for antimicrobial activity. The plants used in this investigation are rich in alkaloids, flavonoids, steroids, terpenoids, protein, amino acids, carbohydrate, quninones, phenols and tannins. The formation of nanoparticles were confirmed by UV/Visible spectroscopy, peaks at 423nm for Ajuga parviflora Benth and 408nm for Digera muricata. The morphology of the silver nanoparticles was established through state of the art spectroscopic tools. SEM analysis reveals average size of AgNPs 18 nm for Digera muricata and 22 nm for Ajuga parviflora Benth respectively while transmission electron microscopy confirms that AgNPs are spherical in shape. The synthesized nanoparticles were subjected to Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Pseudomonas aeruginosa. The results suggest that the silver nanoparticles have promising activity against all the bacterial strains and can be used an effective bactericides.


Sign in / Sign up

Export Citation Format

Share Document