scholarly journals Transcriptomic and metabolic analysis uncovers the role of light quality in carotenoid accumulation of grapefruit during ripening

Author(s):  
Liulian Huang ◽  
Linping Hu ◽  
Wenbin Kong ◽  
Can Yang ◽  
Wanpeng Xi

Abstract Light, a crucial environmental signal, is involved in the regulation of secondary metabolites. To understand the mechanism by which light influences carotenoid metabolism, grapefruits were bagged with four types of light-transmitting bags that altered the transmission of solar light. We showed that light-transmitting bagging induced changes in carotenoid metabolism during fruit ripening. Compared with natural light, red light (RL)-transmittance treatments significantly increased the total carotenoid content by 142%. Based on weighted gene co-expression network analysis (WGCNA), ‘red’, ‘darkred’, ‘yellow’, ‘brown’ and ‘midnightblue’ modules were remarkably associated with carotenoid metabolism under different light treatment. Transcriptome analysis identified the transcription factors (TFs) bHLH74/91/122, NAC56/78/90/100, MYB/MYB308, WRKY7/55, MADS29/AGL61, ERF043/118 as being involved in the regulation of carotenoid metabolism in response to RL. Under RL treatment, these TFs regulated the accumulation of carotenoids by directly modulating the expression of carotenogenic genes, including PSY, Z-ISO2, ZDS6, LCYB, LCYE, CHYB, CCD1-1/1-3, CCD4-2 and NCED2/3. Based on these results, a network of the regulation of carotenoid metabolism by light in citrus fruits was preliminarily proposed. These results showed that RL treatments have great potential to improve coloration and nutritional quality of citrus fruits.

2011 ◽  
Vol 62 (6) ◽  
pp. 531
Author(s):  
C. Rodríguez-Suárez ◽  
M. J. Giménez ◽  
S. G. Atienza

Plant carotenoids are C40 isoprenoids with multiple biological roles. Breeding for carotenoid content in rice, maize and wheat is a relevant issue, both for their importance in human health and nutrition and for their influence in food colouration in products such as pasta from durum wheat. Regarding human health, vitamin A deficiency (VAD) is one of the major causes of malnutrition in the world. As many as 500�000 children become blind due to VAD each year with many of them dying from VAD-related illness within 1 year. This review presents the main results in the improvement of endosperm carotenoid levels in rice, maize and wheat considering the methodology used, either transgenic or non-transgenic; the breeding target, such as provitamin A or total carotenoid content; the identification of new carotenogenic genes/alleles related to the available variation for this trait; and the development of new functional markers for marker-assisted selection. A comparative overview among these species and key areas for further improvement are also identified. Carotenoid enhancement in grasses would benefit from comparative studies among Triticeae species since they allow the understanding of the diversity basis. Therefore, the comparative overview given in this work will be relevant not only to rice, maize and wheat but also to other Triticeae species.


2020 ◽  
Vol 170 (2) ◽  
pp. 187-201
Author(s):  
Giuseppe C. Modarelli ◽  
Carmen Arena ◽  
Giuseppe Pesce ◽  
Emilia Dell'Aversana ◽  
Giovanna M. Fusco ◽  
...  

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Xuefei Lian ◽  
Feifei Li ◽  
Yuanyuan Chang ◽  
Tie Zhou ◽  
Yuewen Chen ◽  
...  

Chewing texture is important for fresh citrus fruits, and the mastication trait of a segment directly determines chewing texture. Roughing disorder impairs the quality of Satsuma mandarin fruits, and it is typically correlated with intrinsic mastication inferiority (IMI). This study explored the role of segment membranes (SMs) in IMI. Similar to IMI in roughing-disordered fruits, segment shear force significantly enhanced relative to controls (CK); cell layers and cell wall thickness increased also in inferior masticating SMs. The ‘Miyamoto Wase’ cultivar exhibited larger segment shear force and more SM cell layers than ‘Juxiangzao’. In SMs, vessel cells could be divided into outside layers where segments adjoin and inside layers where juice sacs grow from. The inside vessel cell layers in the inferior masticating SMs were denser. Vessels with a length of 200 to 300 μm and a diameter of 5 to 15 μm predominated in SMs. The average vessel diameter enlarged by 13% to 16.5% in inferior masticating SMs, depending on cultivars. Furthermore, there was a decrease in vessels with a diameter <5 μm and an increase in vessels >10 μm in the inferior masticating SMs. Between phenotypes, protopectin increased significantly throughout development of inferior masticating SMs, while water-soluble pectin increased during the later stages of development. In one inferior masticating SM sample, protopectin and water-soluble pectin levels were higher in the inner-ring area than those in the outer-ring area. Correspondingly, expression of CuPME21 which is involved in pectin hydrolysis was consistently upregulated in the inferior masticating SMs throughout fruit development. The findings in this work provide novel insights into citrus SM structure and its IMI.


2016 ◽  
Vol 28 (4pt2) ◽  
pp. 1219-1228 ◽  
Author(s):  
Frances A. Champagne

AbstractThe quality of the environment experienced by an individual across his or her lifespan can result in a unique developmental trajectory with consequences for adult phenotype and reproductive success. However, it is also evident that these experiences can impact the development of offspring with continued effect on subsequent generations. Epigenetic mechanisms have been proposed as a mediator of both these within- and across-generation effects, and there is increasing evidence to support the role of environmentally induced changes in DNA methylation, posttranslational histone modifications, and noncoding RNAs in predicting these outcomes. Advances in our understanding of these molecular modifications contribute to increasingly nuanced perspectives on plasticity and transmission of phenotypes across generations. A challenge that emerges from this research is in how we integrate these “new” perspectives with traditional views of development, reproduction, and inheritance. This paper will highlight evidence suggestive of an epigenetic impact of the environment on mothers, fathers, and their offspring, and illustrate the importance of considering the dynamic nature of reproduction and development and inclusive views of inheritance within the evolving field of behavioral and environmental epigenetics.


2020 ◽  
pp. 108201322094401 ◽  
Author(s):  
Jaime Zacarías-García ◽  
Florencia Rey ◽  
José-Vicente Gil ◽  
María J Rodrigo ◽  
Lorenzo Zacarías

The purpose of this study was to evaluate the specific contribution of carotenoids and vitamin C to the lipophilic and hydrophilic antioxidant capacity, respectively, of the pulp of citrus fruits using the genetic diversity in pigmentation and in the carotenoid complement. To this end, six citrus varieties were selected: two mandarins, Clemenules ( Citrus clementina) and Nadorcott ( C. reticulata); two grapefruits ( C. paradisi), Marsh and Star Ruby; and two sweet oranges ( C. sinensis), Valencia late and Valencia Ruby. Total carotenoid content and composition in the pulp of fruits were very different, in relation to their color singularities. Valencia Ruby and Nadorcott had the highest carotenoid content, accumulating the former large amounts of linear carotenes (phytoene, phytofluene, and lycopene) and Nadorcott of β-cryptoxanthin. Orange fruits contained the highest amount of vitamin C while in Nadorcott mandarin it was substantially lower. Analysis of antioxidant capacity, evaluated by 2,2’-azino-di-(3-ethylbenzthiazoline sulfonate) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, in the pulp of the different fruit varieties indicated a high and positive correlation between vitamin C content and hydrophilic antioxidant capacity. Nevertheless, a weak correlation was observed between carotenoids content and lipophilic antioxidant capacity in the pulp extracts assayed by ABTS. Overall, vitamin C in the pulp of citrus fruit had an important contribution to the hydrophilic antioxidant capacity, whereas that of carotenoids to lipophilic antioxidant capacity was very variable, being the highest that of Valencia Ruby orange, with large concentrations of lycopene and phytoene, followed by Nadorcott mandarin, with high β-cryptoxanthin content.


2013 ◽  
Vol 38 (1) ◽  
pp. 47-61
Author(s):  
MARCUS CHENG CHYE TAN

Roysten Abel's The Manganiyar Seduction is perhaps the most popular performance of Indian folk music on the global festival market today. This performance of Rajasthani folk music is an apt exemplification of an auto-exoticism framed as cultural commodity. Its mise en scène of musicians framed, literally, by illuminated red square boxes ‘theatricalizes’ Rajasthan's folk culture of orality and gives the performance a quality of strangeness that borders on theatre and music, contemporary and traditional. The ‘dazzling’ union of the Manganiyars' music and the scenography of Amsterdam's red-light district engendered an exotic seduction that garnered rave reviews on its global tour. This paper examines the production's performative interstices: the in-betweenness of sound and sight where aural tradition is ‘spectacularized’. It will also analyse the shifting convergences of tradition and cultural consumption and further interrogates the role of reception in the construction of such ‘exotic’ spectacles.


Author(s):  
Suwen Lu ◽  
Junli Ye ◽  
Kaijie Zhu ◽  
Yin Zhang ◽  
Mengwei Zhang ◽  
...  

Abstract Carotenoids in citrus contribute the quality of the fruit, but the transcriptional regulatory mechanism is still limitedly known. Here, we characterized a citrus FUL-like MADS gene, CsMADS5, that was ripening-inducible and acted as a nucleus-localized trans-activator. Transient overexpression of CsMADS5 in citrus induced fruit coloration and enhanced carotenoid contents. The expression levels of carotenogenic genes including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene β-cyclase 1 (LCYb1) were significantly increased in the peel of fruits overexpressing CsMADS5. Similar results were observed from stable overexpression of CsMADS5 in tomato fruits and citrus calli, even though the effect of CsMADS5 on the carotenoid metabolism in transgenic citrus calli was limited. Further biochemical analyses demonstrated that CsMADS5 activated the transcription of PSY, PDS, and LCYb1 by directly binding to their promoters. It is concluded that CsMADS5 positively regulates carotenoid biosynthesis in fruits by directly activating the transcription of carotenogenic genes. Moreover, CsMADS5 physically interacted with a positive regulator CsMADS6, indicating that CsMADS5 may form an enhancer complex with CsMADS6 to synergistically promote carotenoid accumulation. These findings expand our understanding of the complex transcriptional regulatory hierarchy for carotenoid biosynthesis during fruit ripening.


Sign in / Sign up

Export Citation Format

Share Document