scholarly journals Successions of Soil phoD And gcd Microbial Communities Along a Chronosequence of Sand-Fixation Forest

Author(s):  
Fei Wang ◽  
Ying Zhang ◽  
Yong Xia ◽  
Zhenbo Cui ◽  
Chengyou Cao

Abstract Revegetation by planting shrubs on moving sand dunes is widely used to control desertification in arid/semi-arid areas. The soil microbial community can gradually recover along with plantation development. The purposes of this study were (1) to investigate the responses of microbial communities involved in the mineralization of soil organic phosphorus (OP) and dissolution of inorganic P (IOP) to the development of sand-fixation plantation and (2) to discuss the interactions between P turnover microbial communities and soil properties. We detected the diversities of soil phoD gene (one of the Pho regulons encoding alkaline phosphomonoesterases) and gcd gene (encoding glucose dehydrogenase) and the compositions of phoD and gcd communities by using the high-throughput Illumina MiSeq sequencing technique in a chronosequence of Caragana microphylla plantations (0-, 10-, 20-, and 37-year plantations and a native C. microphylla shrub forest) in Horqin Sandy Land, northeast China. Soil properties including soil nutrients, enzymatic activity, and P fractions were also determined. The abundance of phoD and gcd genes linearly increased with the plantation age. However, the diversity of soil phoD microbes was more abundant than that of gcd. The phoD gene abundance and the fractions of total OP and IOP were positively correlated with the activity of phosphomonoesterase. Actinobacteria and Streptomycetaceae were absolutely dominant phoD taxa, while Proteobacteria and Rhizobiaceae were absolutely dominant gcd taxa. Plantation development facilitated the progressive successions of soil phoD and gcd communities resulting from the asymmetric increase in the abundance of dominant taxa. Soil total N, NH4-N, and available K were the main factors affecting the structures of phoD and gcd communities, while pH was not the main influencing factor in such arid and nutrient-poor sandy soil. Many phoD or gcd operational taxonomic units were classified into Rhizobium and Bradyrhizobium, suggesting the coupling relationship between soil P turnover and N fixation.

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1707
Author(s):  
Fei Wang ◽  
Ying Zhang ◽  
Yong Xia ◽  
Zhenbo Cui ◽  
Chengyou Cao

Revegetation by planting shrubs on moving sand dunes is widely used to control desertification in arid/semi-arid areas. The soil including microbial community can gradually be improved along with plantation development. The purposes of this study were (1) to investigate the responses of microbial communities involved in the mineralization of soil organic phosphorus (OP) and dissolution of inorganic P (IOP) in the development of sand-fixating plantation and (2) to discuss the interactions between P turnover microbial communities and soil properties. We assessed the compositions of soil phoD gene (one of the Pho regulons encoding alkaline phosphomonoesterases) and gcd gene (encoding glucose dehydrogenase) in microbial community by using high-throughput Illumina MiSeq sequencing in a chronosequence of Caragana microphylla plantations (0-, 10-, 20-, and 37-year plantations and a native C. microphylla shrub forest) in Horqin Sandy Land, Northeast China. Soil properties including soil nutrients, enzymatic activity, and P fractions were also determined. The abundance of phoD and gcd genes linearly increased with the plantation age. However, the diversity of soil phoD microbes was more abundant than that of gcd. The phoD gene abundance and the fractions of total OP and IOP were positively correlated with the activity of phosphomonoesterase. Actinobacteria and Streptomycetaceae were the dominant phoD taxa, while Proteobacteria and Rhizobiaceae were the dominant gcd taxa. Plantation development facilitated the progressive successions of soil phoD and gcd communities resulting from the increase in the abundance of dominant taxa. Total soil N, NH4-N, and available K were the main factors affecting the structures of phoD and gcd communities, while pH was not significantly influencing factor in such arid and nutrient-poor sandy soil. Many phoD or gcd OTUs were classified into Rhizobium and Bradyrhizobium, suggesting the coupling relationship between soil P turnover and N fixation.


2021 ◽  
Vol 13 (13) ◽  
pp. 7358
Author(s):  
Dong-Hyun Kim ◽  
Hyun-Sik Yun ◽  
Young-Saeng Kim ◽  
Jong-Guk Kim

This study analyzed the microbial community metagenomically to determine the cause of the functionality of a livestock wastewater treatment facility that can effectively remove pollutants, such as ammonia and hydrogen sulfide. Illumina MiSeq sequencing was used in analyzing the composition and structure of the microbial community, and the 16S rRNA gene was used. Through Illumina MiSeq sequencing, information such as diversity indicators as well as the composition and structure of microbial communities present in the livestock wastewater treatment facility were obtained, and differences between microbial communities present in the investigated samples were compared. The number of reads, operational taxonomic units, and species richness were lower in influent sample (NLF), where the wastewater enters, than in effluent sample (NL), in which treated wastewater is found. This difference was greater in June 2019 than in January 2020, and the removal rates of ammonia (86.93%) and hydrogen sulfide (99.72%) were also higher in June 2019. In both areas, the community composition was similar in January 2020, whereas the influent sample (NLF) and effluent sample (NL) areas in June 2019 were dominated by Proteobacteria (76.23%) and Firmicutes (67.13%), respectively. Oleiphilaceae (40.89%) and Thioalkalibacteraceae (12.91%), which are related to ammonia and hydrogen sulfide removal, respectively, were identified in influent sample (NLF) in June 2019. They were more abundant in June 2019 than in January 2020. Therefore, the functionality of the livestock wastewater treatment facility was affected by characteristics, including the composition of the microbial community. Compared to Illumina MiSeq sequencing, fewer species were isolated and identified in both areas using culture-based methods, suggesting Illumina MiSeq sequencing as a powerful tool to determine the relevance of microbial communities for pollutant removal.


2010 ◽  
pp. 41-49
Author(s):  
Md Abiar Rahman ◽  
Md Giashuddin Miah ◽  
Hisashi Yahata

Productivity of maize and soil properties change under alley cropping system consisting of four woody species (Gliricidia sepium, Leucaena leucocephala, Cajanus cajan and Senna siamea) at different nitrogen levels (0, 25, 50, 75 and 100% of recommended rate) were studied in the floodplain ecosystem of Bangladesh. Comparative growth performance of four woody species after pruning showed that L. leucocephala attained the highest height, while C. cajan produced the maximum number of branches. Higher and almost similar amount of pruned materials (PM) were obtained from S. siamea, G. sepium and C. cajan species. In general, maize yield increased with the increase in N level irrespective of added PM. However, 100% N plus PM, 75% N plus PM and 100% N without PM (control) produced similar yields. The grain yield of maize obtained from G. sepium alley was 2.82, 4.13 and 5.81% higher over those of L. leucocephala, C. cajan and S. siamea, respectively. Across the alley, only one row of maize in the vicinity of the woody species was affected significantly. There was an increasing trend in soil properties in terms of organic C, total N and CEC in alley cropping treatments especially in G. sepium and L. leucocephala alleys compared to the initial and control soils. Therefore, one fourth chemical N fertilizer can be saved without significant yield loss in maize production in alley cropping system.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 235-256 ◽  
Author(s):  
J. W. van Groenigen ◽  
D. Huygens ◽  
P. Boeckx ◽  
Th. W. Kuyper ◽  
I. M. Lubbers ◽  
...  

Abstract. The study of soil N cycling processes has been, is, and will be at the centre of attention in soil science research. The importance of N as a nutrient for all biota; the ever-increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measuring, and altering the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges of future research. We identify three key challenges with respect to basic N cycling processes producing gaseous emissions: 1. quantifying the importance of nitrifier denitrification and its main controlling factors; 2. characterizing the greenhouse gas mitigation potential and microbiological basis for N2O consumption; 3. characterizing hotspots and hot moments of denitrification Furthermore, we identified a key challenge with respect to modelling: 1. disentangling gross N transformation rates using advanced 15N / 18O tracing models Finally, we propose four key challenges related to how ecological interactions control N cycling processes: 1. linking functional diversity of soil fauna to N cycling processes beyond mineralization; 2. determining the functional relationship between root traits and soil N cycling; 3. characterizing the control that different types of mycorrhizal symbioses exert on N cycling; 4. quantifying the contribution of non-symbiotic pathways to total N fixation fluxes in natural systems We postulate that addressing these challenges will constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation, water and air quality, and climate stability.


2008 ◽  
Vol 17 (1) ◽  
pp. 73 ◽  
Author(s):  
A. NYKÄNEN ◽  
A. GRANSTEDT ◽  
L. JAUHIAINEN

Legume-based leys form the basis for crop rotations in organic farming as they fix nitrogen (N) from the atmosphere for the succeeding crops. The age, yield, C:N, biological N fixation (BNF) and total N of red clover-grass leys were studied for their influence on yields, N uptake and N use efficiency (NUE) of the two sequential cereal crops planted after the leys. Mineral N in deeper soil (30-90 cm) was measured to determine N leaching risk. Altogether, four field experiments were carried out in 1994-1998 at two sites. The age of the ley had no significant effect on the yields and N uptake of the two subsequent cereals. Surprisingly, the residual effect of the leys was negligible, at 0–20 kg N ha-1yr-1. On the other hand, the yield and C:N of previous red clover-grass leys, as well as BNF-N and total-N incorporated into the soil influenced subsequent cereals. NUEs of cereals after ley incorporation were rather high, varying from 30% to 80%. This might indicate that other factors, such as competition from weeds, prevented maximal growth of cereals. The mineral N content deeper in the soil was mostly below 10 kg ha-1 in the sandy soil of Juva, but was 5-25 kg ha-1 in clayey soil of Mietoinen.;


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252216
Author(s):  
Laurie Dunn ◽  
Christophe Lang ◽  
Nicolas Marilleau ◽  
Sébastien Terrat ◽  
Luc Biju-Duval ◽  
...  

According to biogeography studies, the abundance and richness of soil microorganisms vary across multiple spatial scales according to soil properties and farming practices. However, soil microorganisms also exhibit poorly understood temporal variations. This study aimed at better understanding how soil microbial communities respond to changes in farming practices at a landscape scale over time. A regular grid of 269 sites was set up across a 1,200 ha farming landscape, and soil samples were characterized for their molecular microbial biomass and bacterial richness at two dates (2011 and 2016). A mapping approach highlighted that spatial microbial patterns were stable over time, while abundance and richness levels were modified. The drivers of these changes were investigated though a PLS-PM (partial least square path-modeling) approach. Soil properties were stable over time, but farming practices changed. Molecular microbial biomass was mainly driven by soil resources, whereas bacterial richness depended on both farming practices and ecological parameters. Previous-crop and management effects and a temporal dependence of the microbial community on the historical farming management were also highlighted.


1995 ◽  
Vol 75 (3) ◽  
pp. 343-348 ◽  
Author(s):  
Christian Godbout ◽  
Jean-Louis Brown

A Podzolic soil from an old-growth maple hardwood forest in eastern Canada was systematically sampled from a 16.5-m-long trench in 1975. In 1986, the upper 10 cm of the B horizon was resampled from two sampling lines located on each side and parallel to the 1975 trench, one at a distance of 1 m downhill and the other at a distance of 4 m uphill. Total N, organic C, pH, and exchangeable Ca, Mg and K were measured. The objectives were to evaluate the change in the chemical status of the B horizon from 1975 to 1986 and to characterize the spatial variability of the horizon. No significant change was found in the soil chemical properties tested during this 11-yr period. No significant autocorrelation was observed between soil samples 60 cm apart, except for the downhill sampling line, which was located 1 m from the trench. For most properties, the magnitude of the difference between two soil sampling units was not proportional to the distance separating them over the range of 0.6–4.2 m. Except for pH, a difference in soil properties of more than 30% was observed in 37–56% of sample pairs 60 cm apart. Resampling near (1 m) an old soil pit may not be valid because of possible local modifications of soil properties created by the pit, even when it is filled in. Key words: Podzol, soil variability, acidic deposition, soil changes


2021 ◽  
Author(s):  
Jie Luo ◽  
Lukas Beule ◽  
Guodong Shao ◽  
Edzo Veldkamp ◽  
Marife D. Corre

<p>Monoculture croplands are considered as major sources of the greenhouse gas, nitrous oxide (N<sub>2</sub>O). The conversion of monoculture croplands to agroforestry systems, e.g., integrating trees within croplands, is an essential climate-smart management system through extra C sequestration and can potentially mitigate N<sub>2</sub>O emissions. So far, no study has systematically compared gross rates of N<sub>2</sub>O emission and uptake between cropland agroforestry and monoculture. In this study, we used an in-situ <sup>15</sup>N<sub>2</sub>O pool dilution technique to simultaneously measure gross N<sub>2</sub>O emission and uptake over two consecutive growing seasons (2018 - 2019) at three sites in Germany: two sites were on Phaeozem and Cambisol soils with each site having a pair of cropland agroforestry and monoculture systems, and an additional site with only monoculture on an Arenosol soil prone to high nitrate leaching. Our results showed that cropland agroforestry had lower gross N<sub>2</sub>O emissions and higher gross N<sub>2</sub>O uptake than in monoculture at the site with Phaeozem soil (P ≤ 0.018 – 0.025) and did not differ in gross N<sub>2</sub>O emissions and uptake with cropland monoculture at the site with Cambisol soil (P ≥ 0.36). Gross N<sub>2</sub>O emissions were positively correlated with soil mineral N and heterotrophic respiration which, in turn, were correlated with soil temperature, and with water-filled pore space (WFPS) (r = 0.24 ‒ 0.54, P < 0.01). Gross N<sub>2</sub>O emissions were also negatively correlated with nosZ clade I gene abundance (involved in N<sub>2</sub>O-to-N<sub>2</sub> reduction, r = -0.20, P < 0.05). These findings showed that across sites and management systems changes in gross N<sub>2</sub>O emissions were driven by changes in substrate availability and aeration condition (i.e., soil mineral N, C availability, and WFPS), which also influenced denitrification gene abundance. The strong regression values between gross N<sub>2</sub>O emissions and net N<sub>2</sub>O emissions (R<sup>2 </sup>≥ 0.96, P < 0.001) indicated that gross N<sub>2</sub>O emissions largely drove net soil N<sub>2</sub>O emissions. Across sites and management systems, annual soil gross N<sub>2</sub>O emissions and uptake were controlled by clay contents which, in turn, correlated with indices of soil fertility (i.e., effective cation exchange capacity, total N, and C/N ratio) (Spearman rank’s rho = -0.76 – 0.86, P ≤ 0.05). The lower gross N<sub>2</sub>O emissions from the agroforestry tree rows at two sites indicated the potential of agroforestry in reducing soil N<sub>2</sub>O emissions, supporting the need for temperate cropland agroforestry to be considered in greenhouse gas mitigation policies.</p>


2021 ◽  
Vol 1044 ◽  
pp. 143-150
Author(s):  
Muhammad Amir Solihin ◽  
Pujawati Suryatmana ◽  
Fajri Syahid Nurhakim ◽  
Rina Devnita ◽  
Mahfud Arifin

Intensive agricultural cultivation on Cilembu’s Inceptisols has become several soil properties problem for crop production. Nanoparticle phosphate rock and phosphate solubilizing fungi have ability to increase some soil properties content. The research aimed to observe the effect of nanoparticle phosphate rock and phosphate solubilizing fungi on soil P-potential, P-retention, C-organic and base saturation on Cilembu’s Inceptisols. The experiment arranged in Completely Randomized Design. The nanoparticle phosphate rock consisted of 4 levels. The phosphate solubilizing fungi consisted of 2 levels, and 2 replication. Soil P-Potential, P-Retention, C-organic, and Base Saturation were observed. The factors was observed after one month incubation on soil. Results showed that there were an interaction between nanoparticle phosphate rock and phosphate solubilizing fungi on the C-organic after one month incubation. Nanoparticle phosphate rock had affected on C-organic, P-potential and base saturation significantly, but had not affected on P-retention. Utilization of phosphate solubilizing fungi as soil ameliorant had affected significantly on P-potential and C-organic, but had not affected on P-retention and base saturation. Nanoparticle phosphate rock with a dose of 6% had the best effect on increase P-potential and base saturation


2020 ◽  
Author(s):  
Huiqin Xie ◽  
Yongli Ku ◽  
Xiangna Yang ◽  
Le Cao ◽  
Xueli Mei ◽  
...  

Abstract Background: Melon (Cucumis melo L.) is one of the most important fruit crops grown in China. However, the yield and quality of melon have significantly declined under continuous cropping. Phenolic acids are believed to be associated with the continuous monocropping obstacle (CMO) and can influence plant microbe interactions. Coumaric acid (CA) is one of the major phenolic acids found in melon root exudates. The objectives of this study were to estimate the elimination of CA by the soil bacterium K3 as well as its effects on mitigating melon CMO. CA degradation was investigated by monitoring the CA retained in the growth medium using high performance liquid chromatography (HPLC). The effects of CA and K3 on rhizosphere soil microbial communities were investigated by the spread plate method and Illumina MiSeq sequencing. Furthermore, the effects of CA and K3 on melon seedling growth were measured under potted conditions. The changes in soil enzymes and fruit quality under K3 amendment were examined in a greenhouse experiment. Result:The results suggest that the addition of CA had the same result as the CMO, such as deterioration of the microbial community and slower growth of melon plants. HPLC and microbial analysis showed that K3 had a pronounced ability to decompose CA and could improve the soil microbial community environment. Soil inoculation with K3 agent could significantly improve the fruit quality of melon.Conclusion: Our results show that the effects of K3 in the soil are reflected by changes in populations and diversity of soil microbes and suggest that deterioration of microbial communities in soil might be associated with the growth constraint of melon in continuous monoculture systems.


Sign in / Sign up

Export Citation Format

Share Document