scholarly journals Thermoelectric-based cooling system for high-speed motorized spindle II: Optimization and validation strategy

Author(s):  
Fan Kai-Guo ◽  
Rongfei Xu ◽  
Ruoda Wang ◽  
Rui Gao

Abstract With the development of motorized spindle, the cooling effect and the distribution of cooling capacity become the crucial problem of cooling system. An optimization method for ThermoElectric-based Cooling System (TECS) is proposed based on the conservation of energy to distribute the cooling capacity. The main strategy of the proposed optimization method is to make the cold and heat input at different regions of the spindle sleeve equal in real-time through optimizing the contact area between the Heat Conduction Sleeve (HCS) and spindle sleeve. The numerical simulation and thermal characteristics experiments are carried to verify the effect of the proposed optimization method and the TECS. The simulation and experimental results show that the maximum temperature rise and thermal elongation of the TECS-based motorized spindle are reduced 56.7% and 58.6% compared with water-cooled motorized spindle, and the temperature distribution of the spindle sleeve is more uniform. It is meaningful to improve the accuracy of motorized spindle.

2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110208
Author(s):  
Yuan Zhang ◽  
Lifeng Wang ◽  
Yaodong Zhang ◽  
Yongde Zhang

The thermal deformation of high-speed motorized spindle will affect its reliability, so fully considering its thermal characteristics is the premise of optimal design. In order to study the thermal characteristics of high-speed motorized spindles, a coupled model of thermal-flow-structure was established. Through experiment and simulation, the thermal characteristics of spiral cooling motorized spindle are studied, and the U-shaped cooled motorized spindle is designed and optimized. The simulation results show that when the diameter of the cooling channel is 7 mm, the temperature of the spiral cooling system is lower than that of the U-shaped cooling system, but the radial thermal deformation is greater than that of the U-shaped cooling system. As the increase of the channel diameter of U-shaped cooling system, the temperature and radial thermal deformation decrease. When the diameter is 10 mm, the temperature and radial thermal deformation are lower than the spiral cooling system. And as the flow rate increases, the temperature and radial thermal deformation gradually decrease, which provides a basis for a reasonable choice of water flow rate. The maximum error between experiment and simulation is 2°C, and the error is small, which verifies the accuracy and lays the foundation for future research.


2021 ◽  
Author(s):  
Fan Kai-Guo ◽  
Jianying Xiao ◽  
Ruoda Wang ◽  
Rui Gao

Abstract With the increase of spindle speed, heat generation becomes the crucial problem of high-speed motorized spindle. A new cooling system for motorized spindle is proposed based on the principles of thermoelectric refrigeration and fast heat conduction. The main strategy of the proposed ThermoElectric-based Cooling System (TECS) is using the ThermoElectric Cooler (TEC) to cool the spindle through a Heat Conduction Sleeve (HCS). The TEC is designed according to the heat generation of motorized spindle. The cooling capacity generated by the TEC is controlled by electric current passing through the TEC according to the temperature rise of HCS. The HCS is designed to distribute the cold quickly and is installed around the spindle sleeve working as cooling medium. The simulation results show that the cooling effect of the proposed TECS is better than water water-cooling system. It is meaningful to improve the accuracy of motorized spindle.


2011 ◽  
Vol 52-54 ◽  
pp. 2021-2026
Author(s):  
Gui Ling Deng ◽  
Can Zhou

Thermal deformation is an important factor to affect the accuracy of the motorized spindle, the core component of high-speed machine tool. To understand the spindle system transient thermal characteristics of the high-speed turning center CH7516GS, some high-precision sensors and high-frequency data acquisition system is used to establish the temperature and displacement measuring system. The thermal deformation compensation model is established on the basis of the experimental test results.


2016 ◽  
Vol 693 ◽  
pp. 3-10
Author(s):  
Jia Rui Wang ◽  
Ping Fa Feng ◽  
Zhi Jun Wu ◽  
Ding Wen Yu ◽  
Jian Fu Zhang

Finite element simulation is an effective method to study the thermal characteristics of high-speed motorized spindle, how to improve the simulation accuracy has become the key point of this research field. This paper presents a FEA method using ANSYS to precisely predict the thermal characteristics of high-speed spindle. Firstly, the heating and cooling characteristics of high-speed spindle are analyzed, main heating source, convective heat transfer coefficient, and thermal contact resistance are calculated. Secondly, FEA model of the machine center is built, the temperature field and thermal deformation of the spindle system are simulated. Thirdly, an experimental system to test thermal characteristics is designed, simulation results are compared with the experimental results. The result shows that the simulation errors are controlled in a relative low range, the FE modelling method can precisely predict the thermal characteristics of the motorized spindle.


2010 ◽  
Vol 97-101 ◽  
pp. 1942-1946 ◽  
Author(s):  
Ke Zhang ◽  
Yu Hou Wu

A high speed experimental numerical control grinding system based on PMAC-PC was designed, realized machining and measurement integration. High speed motorized spindle finite elements dynamics and thermal characteristics, force analysis of linear motor feed element and parameters setting method based on PMAC, work piece roundness error measurement technology were researched. The grinding experiment and dynamic measurement indicated that the system possessed good following performance and stability; grind the elliptic work piece in the system.


2011 ◽  
Vol 52-54 ◽  
pp. 1206-1211 ◽  
Author(s):  
Huai Xing Wen ◽  
Mei Yan Wang

The thermal characteristics of the motorized spindle determines maching qualities and cutting capabilities, and is one of the important factors influencing the precision of the high speed NC machine tool. To improve the performance of the high speed machine tool, it is important to study the thermal characteristics of the motorized spindle. It had been studied in two ways: one is finite element analysis by Ansys software, in which the finite element analysis model was built. According to the actual working condition, the heat source and the heat transfer coefficient of every part are calculated. On this basis, the temperature field and temperature rises were gotten in Ansys software. The other way is temperature rises experiment on the motorized spindle test platform. The result was shown in the form of curve. These two ways shown the same result: the highest temperature rise appears in the area of electromotor, then followed by the rolling bearing .The result provides the necessary theory basis for optimizing the structure of the motorized spindle and establishes a basis for the research and application about the high speed spindle.


2014 ◽  
Vol 716-717 ◽  
pp. 1707-1710
Author(s):  
Chun Li Lei ◽  
Zhi Yuan Rui ◽  
Te Li ◽  
Qin Wu

In order to control effectively the temperature of the motorized spindle, based on thermodynamics, heat transfer theory and fluid dynamics control theory, the model of motorized spindle with cooling system is established and simulated. Based on the idea of orthogonal experiment and simulation experiment, the comprehensive tests are built, and the optimum matching relation between the heat flux of motor and the flow velocity of cooling liquid is determined in this article. The results show that the flow velocity of coolant can be adjusted according to the heat flux of motor which can control the temperature in the steady range and improves the cooling effect.


2014 ◽  
Vol 1039 ◽  
pp. 368-375
Author(s):  
Chi Lan Cai ◽  
Ya Fei He ◽  
Ning Li ◽  
Qing Zhi Lin

High-speed motorized spindle is the core component of the CNC machines. Its dynamic performance directly affects the accuracy of the geometry, and be the root cause of vibration, noise and temperature increase, etc. Its motor control system has the characteristics of nonlinear and strong coupling, which is one of the key R&D items of the spindle design. Based on granular computing, this paper selects the appropriate granularity to analyze the coupling between the motor control parameters and system performance, and propose a zoning decoupling and optimization method to optimize the overall system performance, which has practical application value.


Author(s):  
Xuegong Hu ◽  
Dawei Tang

In this paper, a natural convection micro cooling system with a capillary microgroove evaporator is proposed. An experimental study on the characteristics of thermal resistance, pressure drop and heat transfer of the cooling system was carried out. Experimental results indicate that the liquid fill ratio has a significant influence on thermal resistance and heat transfer in the cooling system. Increasing system’s cooling capacity at higher input power depends on decreasing the thermal resistance between the outer surfaces of the condenser and ambient environment. Compared with a flat miniature heat pipe (FMHP) and a current fan-cooled radiator for CPU chip of Pentium IV, the present micro cooling system has a stronger heat dissipation capacity. Its best cooling performance at a surface temperature of heat source below 373K reaches 1.68×106W/m2 and the maximum heat transportation capacity is 131.8W. The novel kind of cooling system is suitable for remote cooling of those electronic parts with micro size, high power and thermal sensitivity.


2011 ◽  
Vol 480-481 ◽  
pp. 1511-1515
Author(s):  
Dong Man Yu ◽  
Chang Pei Shang ◽  
Di Wang ◽  
Zhi Hua Gao

Due to high rotation accuracy, high dynamic stiffness, high vibration damping and long life, high-speed spindles supported by hydrodynamic and hydrostatic hybrid bearings are widely applied in the field of high-speed precision machine tools. The basic structure and working principal was detailed introduced, and then demonstrated a series of models and specifications of motorized spindle manufactured by FISCHER company in Switzerland. The finite element model of high-speed motorized spindle was built up and carried out thermal analysis to study the heat generation and heat transfer. With the help of ANSYS finite element software, the temperature field distribution and the temperature rise condition for motorized spindle were analyzed. The result indicates that the front bearing has a higher temperature than that of back bearing. The maximum temperature of inner ring is bigger than that of outer ring.


Sign in / Sign up

Export Citation Format

Share Document