Experimental Investigation on Flow and Thermal Characteristics of a Micro Phase-Change Cooling System With a Microgroove Evaporator

Author(s):  
Xuegong Hu ◽  
Dawei Tang

In this paper, a natural convection micro cooling system with a capillary microgroove evaporator is proposed. An experimental study on the characteristics of thermal resistance, pressure drop and heat transfer of the cooling system was carried out. Experimental results indicate that the liquid fill ratio has a significant influence on thermal resistance and heat transfer in the cooling system. Increasing system’s cooling capacity at higher input power depends on decreasing the thermal resistance between the outer surfaces of the condenser and ambient environment. Compared with a flat miniature heat pipe (FMHP) and a current fan-cooled radiator for CPU chip of Pentium IV, the present micro cooling system has a stronger heat dissipation capacity. Its best cooling performance at a surface temperature of heat source below 373K reaches 1.68×106W/m2 and the maximum heat transportation capacity is 131.8W. The novel kind of cooling system is suitable for remote cooling of those electronic parts with micro size, high power and thermal sensitivity.

Author(s):  
Mohammad Reza Shaeri ◽  
Bradley Richard ◽  
Richard Bonner

Cooling performances of perforated-finned heat sinks (PFHS) are investigated in the laminar forced convection heat transfer mode, through detailed experiments. Perforations like windows with square cross sections are placed on the lateral surfaces of the fins. Cooling performances are evaluated due to changes in both porosities and perforation sizes. Thermal characteristics are reported based on pumping power, in order to provide more practical insight about performances of PFHSs in real applications. It is found that at a constant perforation size, there is an optimum porosity that results in the largest heat transfer coefficient. For a fixed porosity, increasing the number of perforations (reducing the perforation size) results in an enhancement of heat transfer rate due to repeated interruption of the thermal boundary layer. The opposite trend is observed for PFHSs with larger perforation sizes. This indicates that there is an optimum perforation size and distance between perforations in order to achieve the maximum heat transfer coefficients at a constant porosity. Also, a PFHS results in a smaller temperature non-uniformity across the heat sink base, as well as a more rapid reduction in temperature non-uniformity on the heat sink base by increasing pumping power. In addition, the advantage of a PFHS to reduce the overall weight of the cooling system is incorporated into thermal characteristics of the heat sinks, and demonstrated by the mass specific heat transfer coefficient.


Author(s):  
Lei Wang ◽  
Xudong Zhang ◽  
Dr. Jing Liu ◽  
Yixin Zhou

Abstract Liquid metal owns the highest thermal conductivity among all the currently available fluid materials. This property enables it to be a powerful coolant for the thermal management of large power device or high flux chip. In this paper, a high-efficiency heat dissipation system based on the electromagnetic driven rotational flow of liquid metal was demonstrated. The velocity distribution of the liquid metal was theoretically analyzed and numerically simulated. The results showed that the velocity was distributed unevenly along longitudinal section and the maximum velocity appears near the anode. On the temperature distribution profile of the heat dissipation system, the temperature on the electric heater side was much higher than the other regions and the role of the rotated liquid metal was to homogenize the temperature of the system. In addition, the thermal resistance model of the experimental device was established, and several relationships such as thermal resistance-power curve were experimentally measured. The heating power could be determined from the temperature-power relationship graph once the maximum control temperature was given. The heat dissipation method introduced in the paper provides a novel way for fabricating compact chip cooling system.


2019 ◽  
Vol 136 ◽  
pp. 05014
Author(s):  
Zhangyang Kang ◽  
Zhaoyang Lu ◽  
Xin Deng ◽  
Qiongqiong Yao

A numerical study of heat and mass transfer characteristics of a two-inlet PV/T air collector is performed. The influence of thermal characteristics and efficiency is investigated as the area ratios of inlet and outlet of the single channel with two inlets are changed. The design of the two-inlet PV/T air collector can avoid the poor heat transfer conditions of the single inlet PV/T air collector and improve the total photo-thermal efficiency. When the inlet/outlet cross-sectional area ratio is reduced, the inlet air from the second inlet enhances the convection heat transfer in the second duct and the temperature distribution is more uniform. As the cross-sectional area of the second inlet increase, the maximum heat exchange amount of the two-inlet PV/T air collector occurs between the inlet and outlet cross-sectional area ratio L=0.645 and L=0.562.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Bharath Ramakrishnan ◽  
Yaser Hadad ◽  
Sami Alkharabsheh ◽  
Paul R. Chiarot ◽  
Bahgat Sammakia

Data center energy usage keeps growing every year and will continue to increase with rising demand for ecommerce, scientific research, social networking, and use of streaming video services. The miniaturization of microelectronic devices and an increasing demand for clock speed result in high heat flux systems. By adopting direct liquid cooling, the high heat flux and high power demands can be met, while the reliability of the electronic devices is greatly improved. Cold plates which are mounted directly on to the chips facilitate a lower thermal resistance path originating from the chip to the incoming coolant. An attempt was made in the current study to characterize a commercially available cold plate which uses warm water in carrying the heat away from the chip. A mock package mimicking a processor chip with an effective heat transfer area of 6.45 cm2 was developed for this study using a copper block heater arrangement. The thermo-hydraulic performance of the cold plates was investigated by conducting experiments at varying chip power, coolant flow rates, and coolant temperature. The pressure drop (ΔP) and the temperature rise (ΔT) across the cold plates were measured, and the results were presented as flow resistance and thermal resistance curves. A maximum heat flux of 31 W/cm2 was dissipated at a flow rate of 13 cm3/s. A resistance network model was used to calculate an effective heat transfer coefficient by revealing different elements contributing to the total resistance. The study extended to different coolant temperatures ranging from 25 °C to 45 °C addresses the effect of coolant viscosity on the overall performance of the cold plate, and the results were presented as coefficient of performance (COP) curves. A numerical model developed using 6SigmaET was validated against the experimental findings for the flow and thermal performance with minimal percentage difference.


Volume 1 ◽  
2004 ◽  
Author(s):  
D. P. Mishra ◽  
D. Mishra

An experimental investigation of the impinging jet cooling from a heated flat plate has been carried out for several Reynolds numbers (Re) and nozzle to plate distances. The present results indicate that the maximum heat transfer occurs from the heated plate at stagnation point and decreases with radial distances for all cases. The maximum value of the stagnation as well as average Nusselt number is found to occur at separation distance, H/D = 6.0 for Re = 55000. An attempt is also made to study effects of nozzle exit configuration on the heat transfer using a sharp edged orifice for same set of Reynolds numbers and nozzle to plate distance. The stagnation Nusselt numbers of sharp orifice jets are found to be enhanced by around 16–21.4% in comparison to that of square edged orifice. However, the enhancement in the average Nusselt number of sharp orifice is found to be in the range of 7–18.9% as compared to the square edged orifice. The maximum enhancement of 18.9% in average Nu is achieved for Re = 55 000 at H/D = 6. Two separate correlations in terms of Nuo, Re, H/D for both square and sharp edged orifice are obtained which will be useful for designing impinging cooling system.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3963 ◽  
Author(s):  
Jia-Xin Li ◽  
Yun-Ze Li ◽  
Ben-Yuan Cai ◽  
En-Hui Li

This paper presents an air-oriented spray cooling system (SCS) integrated with a two-phase ejector for the thermal management system. Considering its aeronautical application, the spray nozzle in the SCS is an air-blast one. Heat transfer performance (HTP) of air-water spray cooling was studied experimentally on the basis of the ground-based test. Factors including pressure difference between water-inlet-pressure (WIP) and spray cavity one (PDWIC) and the spray volumetric flow rate (SVFR) were investigated and discussed. Under a constant operating condition, the cooling capacity can be promoted by the growth factors of the PDWIC and SVFR with the values from 51.90 kPa to 235.35 kPa and 3.91 L ⋅ h − 1 to 14.53 L ⋅ h − 1 , respectively. Under the same heating power, HTP is proportional to the two dimensionless parameters Reynolds number and Weber number due to the growth of droplet-impacting velocity and droplet size as the increasing of PDWIC or SVFR. Additionally, compared with the factor of the droplet size, the HTP is more sensitive to the variation in the droplet-impacting velocity. Based on the experimental data, an empirical experimental correlation for the prediction of the dimensionless parameter Nusselt number in the non-boiling region with the relative error of only ± 10 % was obtained based on the least square method.


Author(s):  
Koichi Mashiko ◽  
Masataka Mochizuki ◽  
Yuji Saito ◽  
Yasuhiro Horiuchi ◽  
Thang Nguyen ◽  
...  

Recently energy saving is most important concept for all electric products and production. Especially, in Data-Center cooling system, power consumption of current air cooling system is increasing. For not only improving thermal performance but also reducing electric power consumption of this system, liquid cooling system has been developed. This paper reports the development of cold plate technology and vapor chamber application by using micro-channel fin. In case of cold plate application, micro-channel fin technology is good for compact space design, high thermal performance, and easy for design and simulation. Another application is the evaporating surface for vapor chamber. The well-known devices for effective heat transfer or heat spreading with the lowest thermal resistance are heat pipes and vapor chamber, which are two-phase heat transfer devices with excellent heat spreading and heat transfer characteristics. Normally, vapor chamber is composed of sintered power wick. Vapor chamber container is mechanically supported by stamped pedestal or wick column or solid column, but the mechanical strength is not enough strong. So far, the application is limited in the area of low strength assembly. Sometime the mechanical supporting frame is design for preventing deformation. In this paper, the testing result of sample is described that thermal resistance between the heat source and the ambient can be improved approximately 0.1°C/W by using the micro-channel vapor chamber. Additionally, authors presented case designs using vapor chamber for cooling computer processors, and proposed ideas of using micro-channel vapor chamber for heat spreading to replace the traditional metal plate heat spreader.


2012 ◽  
Vol 512-515 ◽  
pp. 2171-2174 ◽  
Author(s):  
Quan Ying Yan ◽  
Ran Huo ◽  
Li Li Jin

Physical and numerical models of the radiant ceiling cooling system were built and numerically simulated. The results showed that the lower the temperature of cooling water is, the lower surface temperature the ceiling has, and the bigger the cooling capacity is. The bigger the depth of tubes is, the higher the surface temperature and the smaller the cooling capacity. The differences are not evident. The bigger the distance of tubes is, the bigger the surface temperature is and the smaller the cooling capacity is. The diameter of tubes has a few influences on the surface temperature and the cooling capacity. Results in this paper can provide basis and guide for the design of the project, the selection of parameters and the feasibility of the system.


Author(s):  
R. Sankar Rao ◽  
S. Bhanu Prakash

Heat pipe is the most widely used heat exchanging device in removal of heat from any given system at a faster rate. The thermal characteristics of heat pipe with single and multi-layered screen mesh wicks have been observed with two working fluids water and acetone. Heat pipe of length 250 mm and 12.7 mm outer diameter, made of copper material is used in all the trials of with and without wick structure. A 100 mesh stainless steel screen wire mesh is chosen as wick structure. Experiments were conducted at different heat loads and various inclinations with 100% fill ratio in evaporator. The performance is measured based on total thermal resistance and overall heat transfer coefficient. The heat pipe is found effective at 60o inclination with acetone as a working fluid and with four layered screen mesh wick. Uncertainty in thermal resistance and heat transfer coefficient is calculated for a heat input of 10W at 0 and 60 inclinations.


Sign in / Sign up

Export Citation Format

Share Document